首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
测绘学   2篇
海洋学   1篇
  2013年   1篇
  2010年   1篇
  2007年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
This paper investigates the impact of rapid small-scale water vapor fluctuations on GPS height determination. Water vapor measurements from a Raman lidar are used for documenting the water vapor heterogeneities and correcting GPS signal propagation delays in clear sky conditions. We use data from four short observing sessions (6 h) during the VAPIC experiment (15 May–15 June 2004). The retrieval of wet delays from our Raman lidar is shown to agree well with radiosonde retrievals (bias and standard deviation (SD) were smaller than 1 and 2.8 mm, respectively) and microwave radiometers (from two different instruments, bias was 6.0/−6.6 mm and SD 1.3/3.8 mm). A standard GPS data analysis is shown to fail in accurately reproducing fast zenith wet delay (ZWD) variations. The ZWD estimates could be improved when mean post-fit phase residuals were removed. Several methodologies for integrating zenith lidar observations into the GPS data processing are also presented. The final method consists in using lidar wet delays for correcting a priori the GPS phase observations and estimating a scale factor for the lidar wet delays jointly with the GPS station position. The estimation of this scale factor allows correcting for a mis-calibration in the lidar data and provides in the same way an estimate of the Raman lidar instrument constant. The agreement of this constant with an independent determination using radiosonde data is at the level of 1–4%. The lidar wet delays were derived by ray-tracing from zenith pointing measurements: further improvement in GPS positioning is expected from slant path lidar measurements that would properly account for water vapor anisotropy.  相似文献   
2.
An Improved Mean-Gravity Model for GPS Hydrostatic Delay Calibration   总被引:2,自引:0,他引:2  
The determination of global positioning system (GPS) heights with submillimeter accuracy needs proper correction of tropospheric delay. In this letter, the modeling of zenith hydrostatic delay (ZHD) was addressed, considering that wet delay must be treated separately. ZHD is traditionally estimated from Saastamoinen's formula using a mean-gravity model and surface pressure observations. The uncertainty in ZHD associated with the mean-gravity model is about 0.3 mm. An improved parametric model is derived here, which yields an uncertainty in the ZHD less than 0.1 mm when the surface altitude lies in the range of 0-9 km. A second parametric model is derived for higher altitudes (such as above radiosonde observations or atmospheric models). Both parametric models depend on latitude, height, and time variables. This dependence is due to the link between the mean gravity and temperature profiles between the surface and ~80-km altitude. The uncertainty in the parametric models due to short-term temporal variability of the temperature profiles is shown to produce an uncertainty in ZHD smaller than 0.1 mm  相似文献   
3.
Abstract

This paper presents an automatic, rigorous, and robust method to determine a Multi-Beam Echo Sounder (MBES) and Inertial Measurement Unit/Inertial Navigation System (IMU/INS) latency calibration. The latency may be due to the IMU/INS itself, but also to the time-tagging configuration, which is generally left to the survey systems user. One survey strip over a flat seafloor is the required configuration of line for using this approach, called Multibeam IMU/INS Latency Automatic Calibration (MILAC), standing for MBES to IMU/INS Latency Automatic Calibration. The algorithm considers only data with maximum latency effects and integrates an automatic data selection for this purpose. The latency estimation procedure is based on an iterative Least Square adjustment method followed by a statistical analysis. Our process can deal with beam acoustic refraction caused by the speed of sound in sea water. The accuracy of MILAC is about 2?ms (millisecond) and its average precision of 0.15?ms. MILAC is able to determine the latency with an average resolution of 5?ms. However, the morphology of the survey line is restricted to smooth and regular seafloor and the survey platform should have a relatively high attitude rate.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号