首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
测绘学   2篇
地球物理   5篇
地质学   6篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2014年   2篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
排序方式: 共有13条查询结果,搜索用时 21 毫秒
1.
Thar desert spreads in western part of Rajasthan, northern part of Gujarat, and some parts of Punjab and Haryana. The terrain is dominated by slightly sloping plains, broken by some dunes and low barren hills. The area is characterized by low average annual rainfall which is erratic in distribution and intensity. Drought will remain a major hindrance for agricultural production in Thar desert. Due to water stress condition, many watershed based development activities has been adopted by government and non-government organizations for the growth and sustainable development of this region. The need of this hour is preparation of a national level watershed atlas of 1:50,000 scale because majority of thematic maps are being produced presently on same or 1:10,000 scale. The manual delineation of watershed boundary in flat terrain based on topographic map will be time consuming and less accurate in the absence of prominent contour lines. Automated approach for watershed delineation using Digital Elevation Model (DEM) along a suitable algorithm has the advantage because the output is not only less time consuming but also independent from human decisions. Hence, a case study has been carried out in Churu sub-basin part of Indus basin which is located in Thar desert region. Depression less DEM with different spatial resolutions was used as input in hydrology tool of ArcGIS spatial analyst function for characterization of watersheds. The Churu sub-basin has been divided into various numbers of watersheds with an average size of 600 km2. These watershed boundaries have been validated with respect to high resolution satellite imageries (IRS P6 LISS IV), Survey of India toposheets, ancillary data and limited field checks.  相似文献   
2.
Subansiri?CRanganadi Doab (confluence country), located in Lakhimpur district, Assam, is one of the worst flood-affected areas in Brahmaputra valley. The Doab is well populated, and land around these rivers is extensively used for cultivation. As means of flood protection, embankments were constructed in the 1950s along the banks of both the rivers. On the other hand, these rivers are dynamic in terms of banklines and other forms of channel changes. Progressive migration of bankline, due to erosion, results in loss of cultivable land. Moreover, it causes breaches in the embankments increasing the severity of flood in the Doab. This paper attempts to study the changes in the banklines of two major rivers in the floodplains of the Subansiri?CRanganadi Doab during 1997?C2009 in the context of the riverine hazards it brings to the floodplain dwellers. The shift of the banklines in Subansiri?CRanganadi Doab, downstream of North Lakhimpur, has been estimated using IRS LISS imageries of 1997 and 2009 in GIS environment. The river Subansiri during the study period has migrated westward and has widened substantially resulting in erosion of an area of ~19.137?km2. For Ranganadi, the total area that has been eroded due to channel changes is ~0.897?km2. The channel changes are mainly due to concave bank erosion associated with high stages of flow. Channel widening in Subansiri and Ranganadi in the study area during the decades of 1990s and 2000 has led to frequent breaches in the embankments. Lateral erosion and inundation due to embankment failure are the most dominant facets of riverine hazards in the study area as these lead to loss of livelihood. Therefore, it is necessary to incorporate geomorphic changes in formulating flood management programmes.  相似文献   
3.
In northern regions, river ice‐ jam flooding can be more severe than open‐water flooding causing property and infrastructure damages, loss of human life and adverse impacts on aquatic ecosystems. Very little has been performed to assess the risk induced by ice‐related floods because most risk assessments are limited to open‐water floods. The specific objective of this study is to incorporate ice‐jam numerical modelling tools (e.g. RIVICE, Monte‐Carlo simulation) into flood hazard and risk assessment along the Peace River at the Town of Peace River (TPR) in Alberta, Canada. Adequate historical data for different ice‐jam and open‐water flooding events were available for this study site and were useful in developing ice‐affected stage‐frequency curves. These curves were then applied to calibrate a numerical hydraulic model, which simulated different ice jams and flood scenarios along the Peace River at the TPR. A Monte‐Carlo analysis was then carried out to acquire an ensemble of water level profiles to determine the 1 : 100‐year and 1 : 200‐year annual exceedance probability flood stages for the TPR. These flood stages were then used to map flood hazard and vulnerability of the TPR. Finally, the flood risk for a 200‐year return period was calculated to be an average of $32/m2/a ($/m2/a corresponds to a unit of annual expected damages or risk). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
4.
The Singrauli region is known for fluoride contamination and its effect on human population. In this work the possible sources of fluoride contamination in Rihand reservoir water is constrained. They include slurry water, fly ash and coal samples of various thermal power plants, coal seams and granites of the region. Petrographic study depicted the presence of fluoride bearing minerals - flour apatite in pink granite. Preliminary scanning electron microscope studies revealed presence of fluorine peak in coal samples. The chemical analysis confirmed the presence of fluoride in fly ash (12.6 mg/kg), drain water (5.34 mg/l), soil (6.1 mg/kg), coal (3.1 mg/kg). They confirmed the source of fluoride from coal of thermal power plant which utilized coal from Singrauli coal seam (1.6 mg/kg). Further the Rihand reservoir water is also enriched by fluoride contaminant (upto 4.7 mg/l). This contaminates groundwater of the area as well. The contaminated water used for drinking and agriculture affects health of inhabitants in the area. It is concluded that the main source of fluoride contamination in the study area is due to coal burnt in thermal power plant and pink granite formation of the area, both anthropogenic and geogenic sources are implied.  相似文献   
5.
In north‐central Oklahoma eastern redcedar (Juniperus virginiana), encroachment into grassland is widespread and is suspected of reducing streamflow, but the effects of this encroachment on soil hydraulic properties are unknown. This knowledge gap creates uncertainty in understanding the hydrologic effects of eastern redcedar encroachment and obstructs fact‐based management of encroached systems. The objective of this study was to quantify the effects of eastern redcedar encroachment into tallgrass prairie on soil hydraulic properties. Leaf litter depth, soil organic matter, soil water repellency, soil water content, sorptivity, and unsaturated hydraulic conductivity were measured near Stillwater, OK, along 12 radial transects from eastern redcedar trunks to the center of the grassy intercanopy space. Eastern redcedar encroachment in the second half of the 20th century caused the accumulation of 3 cm of hydrophobic leaf litter near the trunks of eastern redcedar trees. This leaf litter was associated with increased soil organic matter in the upper 6 cm of soil under eastern redcedar trees (5.96% by mass) relative to the grass‐dominated intercanopy area (3.99% by mass). Water repellency was more prevalent under eastern redcedar than under grass, and sorptivity under eastern redcedar was 0.10 mm s?1/2, one seventh the sorptivity under adjacent prairie grasses (0.68 mm s?1/2). Median unsaturated hydraulic conductivity under grass was 2.52 cm h?1, four times greater than under eastern redcedar canopies (0.57 cm h?1). Lower sorptivity and unsaturated hydraulic conductivity would tend to decrease infiltration and increase runoff, but other factors such as rainfall interception by the eastern redcedar canopy and litter layer, and preferential flow induced by hydrophobicity must be examined before the effects of encroachment on streamflow can be predicted. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
6.
The extraction of urban built-up areas is an important aspect of urban planning and understanding the complex drivers and biophysical mechanism of urban climate processes. However, built-up area extraction using Landsat data is a challenging task due to spatio-temporal dynamics and spatially intermixed nature of Land Use and Land Cover (LULC) in the cities of the developing countries, particularly in tropics. In the light of advantages and drawbacks of the Normalized Difference Built-up Index (NDBI) and Built-up Area Extraction Method (BAEM), a new and simple method i.e. Step-wise Land-class Elimination Approach (SLEA) is proposed for rapid and accurate mapping of urban built-up areas without depending exclusively on the band specific normalized indices, in order to pursue a more generalized approach. It combines the use of a single band layer, Normalized Difference Vegetation Index (NDVI) image and another binary image obtained through Logit model. Based on the spectral designation of the satellite image in use, a particular band is chosen for identification of water pixels. The Double-window Flexible Pace Search (DFPS) approach is employed for finding the optimum threshold value that segments the selected band image into water and non-water categories. The water pixels are then eliminated from the original image. The vegetation pixels are similarly identified using the NDVI image and eliminated. The residual pixels left after elimination of water and vegetation categories belong either to the built-up areas or to bare land categories. Logit model is used for separation of the built-up areas from bare lands. The effectiveness of this method was tested through the mapping of built-up areas of the Kolkata Metropolitan Area (KMA), India from Thematic Mapper (TM) images of 2000, 2005 and 2010, and Operational Land Imager (OLI) image of 2015. Results of the proposed SLEA were 95.33% accurate on the whole, while those derived by the NDBI and BAEM approaches returned an overall accuracy of 83.67% and 89.33%, respectively. Comparisons of the results obtained using this method with those obtained from NDBI and BAEM approaches demonstrate that the proposed approach is quite reliable. The SLEA generates new patterns of evidence and hypotheses for built-up areas extraction research, providing an integral link with statistical science and encouraging trans-disciplinary collaborations to build robust knowledge and problem solving capacity in urban areas. It also brings landscape architecture, urban and regional planning, landscape and ecological engineering, and other practice-oriented fields to bear together in processes for identifying problems and analyzing, synthesizng, and evaluating desirable alternatives for urban change. This method produced very accurate results in a more efficient manner compared to the earlier built-up area extraction approaches for the landscape and urban planning.  相似文献   
7.
Aerial Bay is one of the harbor towns of Andaman and Nicobar Islands, the union territory of India. Nevertheless, it is least studied marine environment, particularly for physico-chemical assessment. Therefore, to evaluate the annual spatiotemporal variations of physico-chemical parameters, seawater samples collected from 20 sampling stations covering three seasons were analyzed. Multivariate statistics is applied to the investigated data in an attempt to understand the causes of variation in physico-chemical parameters. Cluster analysis distinguished mangrove and open sea stations from other areas by considering distinctive physico-chemical characteristics. Factor analysis revealed 79.5% of total variance in physico-chemical parameters. Strong loading included transparency, TSS, DO, BOD, salinity, nitrate, nitrite, inorganic phosphate, total phosphorus and silicate. In addition, box-whisker plots and Geographical Information System based land use data further facilitated and supported multivariate results.  相似文献   
8.
Groundwater is the most important and valuable natural resources especially in coastal urban environment where surface water is insufficient to satisfy the water requirement. Puri city is located on the east coast of India where groundwater is the only source available to meet city water supply. As the city is situated on the sandy aquifer, quality of groundwater is deteriorating because of anthropogenic activities, lack of sewerage system, etc. The objective of the study was to assess the groundwater fluctuation during post‐monsoon and summer with respect to hydrogeological conditions, topography, and groundwater consumption pattern of the city. For this assessment and analysis, Geographic Information System (GIS) was used to visualize topography of the area through digital elevation model (DEM) and distribution of groundwater contours spatially and temporally. The probable areas prone to contamination were identified based on aquifer property and depths to water table below ground. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
9.
Groundwater recharge and mounding of water‐table is a complex phenomenon involving time‐ and space‐dependent hydrologic processes. The effect of long‐term groundwater mounding in the aquifer depends on soil, aquifer geometry and the area contributing to recharge. In this paper, a GIS‐based spatio‐temporal algorithm has been developed for the groundwater mound dynamics to estimate the potential rise in the water‐table and groundwater volume balance residual in an unconfined aquifer. The recharge and mound dynamics as predicted using the methodology recommended here were compared with those using the Hantush equation, and the differences were quite significant. The significance of the study is to assess the effectiveness of the basin in terms of its hydrologic and hydraulic properties for sustainable management of groundwater recharge. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
10.
The Neoproterozoic Bhander Group in the Son Valley, central India conformably overlying the Rewa Group, is the uppermost subdivision of the Vindhyan Supergroup dominantly composed of arenites, carbonates and shales. In Maihar-Nagod area, a thick pile of unmetamorphosed clastic sedimentary rocks of Bhander Group is exposed, which provides a unique opportunity to study Neoproterozoic basin development through provenance and tectonic interpretations. The provenance discrimination and tectonic setting interpretations are based on modal analysis and whole rock geochemistry. The average framework composition of the detrital sediments composed of quartz and sedimentary lithic fragments are classified as quartz arenite to sublitharenite. The sandstone geochemically reflects high SiO2, moderate Al2O3 and low CaO and Na2O type arenite. The high concentration of HFSE such as Zr, Hf, and Th/Sc, Th/U ratios in these sandstones indicate a mixed provenance. The chondrite normalized REE pattern shows moderate to strong negative Eu anomaly which suggests that major part of the sediments were derived from the granitic source area. The sandstone tectonic discrimination diagrams and various geochemical plots suggest that the provenance of the lower and upper Bhander sandstone formations was continental interior to recycled orogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号