排序方式: 共有59条查询结果,搜索用时 15 毫秒
1.
一种水产动物病毒现场检测免疫芯片的制备与应用 总被引:2,自引:2,他引:2
采用原子力显微镜对氨基化玻片及6种不同方法修饰玻片进行表面特征分析,并比较了硝酸纤维素(NC)膜、PVDF膜以及以上不同修饰玻片对抗体的固定效率、固定效果,最终选择琼脂糖修饰玻片作为芯片载体。将纯化后的兔抗血清(捕获抗体)点样至琼脂糖修饰玻片上,制备免疫芯片,与待检样品(病毒感染的靶器官组织)匀浆液孵育形成复合物,该复合物被辣根过氧化物酶(HRP)标记的特异性单克隆抗体(单抗)识别,经底物显色,得到肉眼可见的检测结果。通过改变芯片制备及应用过程中的具体条件参数,对各条件进行了优化,并采用生物素-链亲和素(BAS)标记特异性单抗作为检测抗体以提高检测灵敏度。基于此夹心免疫分析原理制备的WSSV、LCDV现场检测免疫芯片,病毒的最低检出量分别为82.50ng/ml、0.88μg/ml,在一定的抗原浓度范围内,病毒浓度的对数值与信号强度呈线性关系;采用BAS放大检测信号后,病毒的最低检出量为12.38ng/ml、0.22μg/ml。该免疫芯片与酶联免疫吸附法(ELISA)及免疫荧光法(IFAT)对同种样品的检测结果高度一致。 相似文献
2.
用鲶爱德华氏菌兔抗血清作为一抗,碱性磷酸酶(AP)标记的羊抗兔IgG作为酶标二抗,建立黄颡鱼"红头病"病原菌—鲶爱德华氏菌的间接酶联免疫(ELISA)快速检测法,并优化检测条件。抗原最佳包被浓度为107/mL,一抗工作的最佳稀释度为1∶211,病原菌的检测灵敏度为105/mL,交叉反应实验证明该方法特异性强,与迟钝爱德华氏菌、弧菌等13种标准菌株无交叉。应用上述技术对人工感染发病鱼中分离的优势菌进行检测,结果表明阳性检出率为80%;对自然发病黄颡鱼体内分离获得的20株优势菌检测结果表明,12株菌为鲶爱德华氏菌。 相似文献
3.
4.
White spot syndrome virus (WSSV) is one of the major shrimp pathogens causing large economic losses to shrimp farming. In an attempt to identify the envelope proteins involved in the virus infection, purified WSSV virions were mixed with three antisera against WSSV envelope proteins (VP39, VP124 and VP187 ), individually. And then they were injected intramuscularly into crayfish (Procambarus clarkii) to conduct in vivo neutralization assays. The results showed that for groups injected with virions only and groups injected with the mixture of virions and antiserum against VP124, the crayfish mortalities were 100% and 60% on the 8th day postinfection, individually. The virus infection could be delayed or neutralized by antibody against the envelope protein VP124. Quantitative PCR was used to further investigate the influence of three antisera described above on the virus infection. The results showed that the antiserum against VP124 could restrain the propagation of WSSV in crayfish. All of the results suggested that the viral envelope protein VP124 played a role in WSSV infection. 相似文献
5.
应用荧光抗体技术检测牙鲆体内的河流弧菌 总被引:12,自引:0,他引:12
用灭活的河流弧菌(Vibrio fluvialis)抗原,注射免疫实验兔,制得凝集价为1∶5 120的抗血清。用试管凝集法检测了抗血清的特异性,再用免疫吸附法去除交叉反应,从而得到高效价、高特异性的抗河流弧菌血清。用所制备的抗血清在实验室中建立起河流弧菌荧光抗体检测技术(FAT),在荧光显微镜下可清楚地看到被标记的病原菌,整个检测过程只需3h。用河流弧菌感染牙鲆(Paralichthys olivaceus),24 h后,用FAT测定牙鲆的血液、肾脏和肝脏中的河流弧菌,在血液中河流弧菌的检出率最高,其次是肾脏,肝脏的检出率最低。以上结果表明:荧光抗体技术可以快速、灵敏、准确地检测出牙鲆体内的河流弧菌。 相似文献
6.
海豚链球菌(Streptococcus iniae)是引起鱼类链球菌病的主要致病菌,对牙鲆(Paralichthys olivaceus)等养殖鱼类造成巨大危害。本文制备了海豚链球菌强毒株NUF849的福尔马林灭活全菌(FKC)、胞外产物(ECPs)及全菌与胞外产物的混合物(FKC+ECPs),以其免疫牙鲆,在免疫后第42天分别以海豚链球菌NUF849和NUF812攻毒,并在免疫前以及免疫后第7、14、21、28、35、42天与攻毒后第7天取样,分析3种免疫原以及免疫后再攻毒所诱发的血清抗体应答。结果显示,免疫后牙鲆体内产生了分别针对FKC和ECPs的特异性抗体,且各免疫组中FKC诱导的抗体水平较ECPs高,2种抗原间存在一定程度的交叉反应;FKC+ECPs组的两种抗体水平显著高于其他组(P0.05);攻毒后第7天2种抗体水平都显著升高(P0.05),并且免疫原来源菌株NUF849攻毒组的2种抗体水平高于非免疫原来源菌株NUF812攻毒组。攻毒后存活牙鲆的血清对NUF849、NUF812全菌蛋白及其胞外产物进行Western-blot分析,结果显示抗血清与全菌蛋白的阳性反应条带位于25~100kDa,与胞外产物的阳性反应条带位于18~100kDa。本文结果表明灭活海豚链球菌与胞外产物都能够诱发牙鲆产生特异性抗体,二者混合物的免疫效果更好,且NUF849来源的免疫原可以刺激牙鲆产生针对NUF812菌株的交叉保护抗体,为牙鲆海豚链球菌疫苗成分的筛选提供了基础资料。 相似文献
7.
大黄鱼病原副溶血弧菌单克隆抗体制备及其应用 总被引:5,自引:0,他引:5
用甲醛灭活副溶血弧菌(Vibrio parahaemolyticus)和溶藻弧菌(V.alginolyticus)制成免疫原免疫BALB/c小鼠,利用淋巴细胞杂交瘤技术,获得1株特异的针对副溶血弧菌的单克隆抗体,命名为D6F3H5。腹水及培养上清液抗体的ELISA效价分别为:1∶5 120和1∶1 280,该单克隆抗体与其它细菌没有明显的交叉反应。利用该单克隆抗体和兔抗副溶血弧菌多克隆抗体,建立了检测副溶血弧菌的双抗体夹心ELISA方法。该方法对副溶血弧菌的最小检出量为5×104个/mL。用双抗体夹心ELISA检测大黄鱼(Pseudosciaena crocea)样品,14尾患病大黄鱼中有11尾检出副溶血弧菌,而10尾健康大黄鱼都没有检出副溶血弧菌。由此可见,本试验制备的高特异性的抗副溶血弧菌单克隆抗体,可以用于患病大黄鱼副溶血弧菌的快速诊断。 相似文献
8.
9.
10.
将新加坡石斑鱼虹彩病毒(Singapore grouper iridovirus,SGIV)的ORF162的开放式阅读框插入pET-32a表达载体T7启动子控制下的6-His·Tag编码基因上游,构建SGIVORF162原核表达质粒pET-ORF162。表达质粒转化入大肠杆菌BL21(DE3)菌株,经IPTG诱导,成功表达SGIV ORF162融合蛋白。对IPTG浓度、诱导温度、诱导时间等诱导表达条件进行优化后,确定在0.7mmol/LIPTG、16℃条件下诱导14h时可溶性SGIV ORF162重组蛋白占重组蛋白总量的95%。经镍琼脂糖凝胶纯化,获得纯度为90%以上的SGIV ORF162蛋白。用纯化的SGIV ORF162蛋白免疫小鼠,获得高效特异的SGIV ORF162多克隆抗体。 相似文献