排序方式: 共有74条查询结果,搜索用时 78 毫秒
1.
深圳市雷暴天气气候变化特征分析 总被引:29,自引:0,他引:29
利用深圳市1953~2005年逐日雷暴资料,通过数理统计、线性分析、突变分析、小波分析等方法,得出了深圳市雷暴天气的气候变化特征。结果表明:深圳市属于雷暴多发区,53a平均雷暴日数为68.2d;年雷暴日数年际变化辐度大,最多年为103d,而最少年仅为47d,最大值与最小值相差1倍多;初雷一般出现在3月上旬,终雷一般出现在10月中旬,而且初雷的发生,有越来越早的趋势,终雷结束时间有越来越晚的趋势;全年各月均有出现雷暴的可能,但雷暴的出现有着明显的季节性变化,主要集中出现在夏季,冬季雷暴出现的概率非常低,且53a来雷暴的发生有逐渐减少的趋势,气候倾向率为-1.8d/10a。另外深圳市雷暴的年际变化存在着准3a较短周期和11a、19a左右的长周期振荡。 相似文献
2.
本文利用多种常规和非常规观测资料对北京2012年7月21日大暴雨过程的降水特点,引发特大暴雨的中尺度对流系统的环境场条件及其发生发展过程进行了全面的分析。观测分析发现:这次特大暴雨是一次极端性降水过程,具有持续时间长、雨量大、范围广的特点。降水过程由暖区降水和锋面降水组成。暖区降水开始时间早,强降水中心较为分散,持续时间长。锋面降水阶段,多个强降水中心相连,形成雨带,雨强大,降水效率高,持续时间较短。引发此次特大暴雨的中尺度对流系统的环境场条件分析发现:极端降水过程发生在高层辐散、中低层低涡切变和地面辐合线等高低空系统耦合的背景下。来源于热带和副热带的暖湿空气在暴雨区辐合,持续输送充沛的水汽,具有极高的整层可降水量、强低层水汽辐合等极端水汽条件。在充沛的水汽条件下,低涡切变、低空急流上的风速脉动、地面辐合线、地形作用等触发了强降水。随着锋面系统东移,在冷空气和适度的垂直风切变作用下对流系统组织化发展,产生较强的锋面降水。中尺度对流系统发生发展过程分析发现:降水过程首先以层状云降水和分散的对流性降水为主。随着干冷空气的侵入逐渐转化为高度组织化的对流性降水,多个中小尺度对流云团组织化发展并形成MCC,产生极端强降水。由于回波长轴方向、地形以及回波移动方向三者平行,此次过程的雷达回波具有明显的“列车效应”;并具有明显的后向传播特征和低质心的热带降水回波特点。通过此次罕见暴雨事件观测资料的综合分析,提出了需要进一步研究的问题:此次特大暴雨过程极端性降水特点及极端水汽条件的成因;北方地区暖区暴雨的形成机制;列车效应和后向传播的形成机制;对流单体的组织维持机制以及数值预报对暖区降水的模拟诊断能力等。 相似文献
3.
我国秋季降水、温度的时空分布特征及气候变化 总被引:24,自引:1,他引:23
首先利用1951-1999年资料,研究了我国秋季(9-11月)降水、温度的时空特征。找出我国秋雨明显的地区。然后划分秋季的旱涝年及秋季气温的冷暖年。并研究旱涝、冷暖年的气候变化特征,最后利用500hPa位势高度资料分析了我国及长江中下游地区秋季气候异常的大尺度环流背景及气候变化的成因。 相似文献
4.
本文是“北京7.21特大暴雨极端性分析及思考”的第二部分,第一部分“观测分析及思考”对此次过程的降水特点、水汽特点、中尺度对流系统(MCS)的环境场条件和发生发展过程进行了分析,指出这是一次极端降水过程。本文进一步从影响降水的因子:降水效率、水汽、上升运动、持续时间等方面进一步探讨极端性降水的成因,所用资料为业务中常用的模式分析和各种观测资料。分析表明,本次过程为典型华北暴雨环流形势,其中高层气流辐散区与低层低涡切变线的耦合是直接诱因;较高的环境相对湿度和湿层较厚,较低的抬升凝结高度和自由对流高度以及热带降水性质提高了本次过程的降水效率;异常大的水汽含量(可降水量达60-80mm)及与其相关的物理量异常,可作为判断极端降水的重要因子;环境大气具有中下层条件性不稳定,上层湿中性层结特性,CAPE值中等,同时上层干侵入增加了对流不稳定,有利于上升运动发展;低涡切变线及华北地形共同触发了MCS的在暖区生成发展;低涡北跳、MCS后向传播特性使暖区MCS东移速度慢,形成“列车效应”,造成降雨持续时间长。本文最后探讨了极端降水的预报思路。 相似文献
5.
本文利用常规、自动气象站观测资料,卫星、雷达、风廓线探测资料和NCEP再分析资料(1°×1°,逐6小时),对2012年7月21日北京地区特大暴雨的中尺度对流条件和对流系统特征进行了初步探讨,结果表明:本次极端强降雨成因主要包括非常充沛的水汽,一定的对流不稳定性,对流系统持续的“列车效应”,以及低质心高效率的降雨对流系统。低层的切变线和地面辐合线相交的地区,是对流单体初生和强烈发展的区域;根据中层风的风向风速及地面辐合线的位置和走向,可以大致判断对流单体的移动方向及是否存在列车效应。基于静止卫星红外云图和雷达反射率因子资料的中尺度对流系统分析表明该次降水过程存在三个阶段:第一阶段为对流系统强烈发展的前期阶段;第二阶段对流系统发展最为强烈,北京大部分地区出现极端强降雨;第三阶段为北京地区对流和降雨显著减弱阶段。 相似文献
6.
2012年7月7日黄淮出现一次典型暖区大暴雨过程,降水持续时间长、强度大和强降水范围集中,中尺度特征明显。本文通过常规和非常规观测、NCEP分析资料对该次黄淮暖切变线引发的豫东北、鲁南和苏北等地大暴雨天气过程的成因进行探讨,结果表明:整层高湿环境有利于降低暖区暴雨对抬升条件的要求、提高降水效率和局地不断产生中尺度对流系统;低层垂直风切变和超低空急流在对流触发和维持中可能有重要作用;次天气及以下尺度的抬升条件,如地面辐合线、925和850 hPa切变和低空急流出口区的风速辐合等均可导致强降水,降水落区一般位于低层多层风速辐合的叠置区;暖区暴雨的雷达回波具有明显的后向传播、列车效应和热带降水型特点。 相似文献
7.
强对流天气短时临近预报业务足同家防灾减灾、重大社会活动和精细化天气预报的迫切需要.虽然我国强对流天气短时临近预报业务已经取得了巨大进展,但与国外先进水平相比还有不少差距.本文总结了近年国内外强对流天气短时临近预报业务现状、技术进展、目前同内的技术支撑状况和所面临的挑战,并提出r相应的应对措施.目前强对流天气短时临近预报技术仍然主要是外推预报技术、数值预报技术和概念模型预报技术等,但快速更新循环的高时空分辨率数值模式预报和新一代静止气象卫星资料将在强对流天气短时临近预报中发挥重要作用.强对流天气监测、分析和机理研究是强对流天气短时临近预报的重要基础;先进的外推预报方法同快速更新循环的高时空分辨率数值模式预报以及二者的融合是未来强对流天气短时临近预报的重要发展方向. 相似文献
8.
利用1951—1999年我国秋季(9—11月)降水、温度和南方涛动指数(SOI)1935—2000年资料研究ENS0与我国秋季气候异常的关系,结果表明,秋季降水与ENS0的关系远比夏季降水与ENS0的关系好。E1Nino年我国秋季降水出现南多北少的分布型(S型)的频率增加近20%,而La Nina年出现S型的频率减少20%。反之,当我国秋季降水距平出现大尺度南北降水异常时,往往表示当时有ENS0现象发生。E1 Nino和La Nina年我国秋季降水距平的分布有显著差异,且这种显著差异主要表现在长江南北、西北和河套地区。不同时段SOI对秋季气候异常的影响不同,当年4—10月SOI值与秋季降水EOF分解第二时间系数(反映大尺度南北旱涝异常特征的权重系数)之间为较明显的正相关,其中8月最显著。上一年7—9月和同年1—3月的SOI值同秋季气温EOF分解的第二时间系数的正相关较明显。可根据前期5—8月的月平均SOI值,预报秋季大尺度降水异常,当年5—8月的SOI平均值偏高时,长江以南(北)地区的降水将有减少(增加)的可能,反之亦然。 相似文献
9.
青藏高原东北部区域性大到暴雨的诊断分析及数值模拟 总被引:14,自引:1,他引:13
利用NCEP时间间隔为6h的1°×1°的格点资料、常规探测资料和MM5V3.4版非静力中尺度模式对2003年7月29~30日高原东北部的区域性大到暴雨过程进行诊断分析和数值模拟,研究该过程的天气形势、物理量场配置和卫星云图的演变特征及复杂地形的影响。结果表明,南亚高压西部副型是高原东北部大到暴雨天气过程的主要流型,对大到暴雨预报有一定的指示意义。云系的叠置可为高原及邻近地区的暴雨预报提供重要的依据。MM5非静力中尺度模式对高原大到暴雨天气过程有一定的模拟能力,可为高原暴雨的进一步诊断分析提供高分辨率资料。高原大到暴雨过程的水汽初始源地,有直接水汽源和陆地水汽源。暴雨盛期,物理量场配置与平原地区不同。低层辐合和气旋性涡度的加强所产生的强上升运动是造成较大降水的原因,中低层出现θse的Ω型场是一种不稳定的层结,暴雨区出现在暖舌中。高原东北部的特殊河谷地形及叠加在高原大地形上的中尺度地形对冷暖空气的作用对暴雨过程至关重要,地形在其中的作用主要是动力性的。 相似文献
10.