首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   22篇
  国内免费   45篇
测绘学   14篇
大气科学   29篇
地球物理   7篇
地质学   83篇
海洋学   18篇
综合类   3篇
自然地理   5篇
  2024年   1篇
  2023年   6篇
  2022年   3篇
  2021年   8篇
  2020年   7篇
  2019年   5篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   3篇
  2014年   13篇
  2013年   10篇
  2012年   9篇
  2011年   11篇
  2010年   12篇
  2009年   16篇
  2008年   16篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2001年   3篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有159条查询结果,搜索用时 35 毫秒
71.
72.
73.
74.
中华人民共和国国家发展和改革委员会中华人民共和国工业和信息化部中华人民共和国财政部中华人民共和国住房和城乡建设部中华人民共和国交通运输部中华人民共和国铁道部中华人民共和国水利部国家广播电影电视总局中国民用航空局令第23号为落实《国务院办公厅转发发展改革委法制办、监察部关于做好招标投标法实施条例贯彻实施工作意见的通知》(国办发〔2012〕21号)关于全面清理与招投标有关规  相似文献   
75.
江西山南铀矿区位于相山铀矿田的北部,矿区内出露有大量的流纹岩和花岗斑岩,两者也是矿区内最主要的赋矿岩石。地球化学和Sr、Nd同位素研究表明,流纹英安岩和花岗斑岩具有高硅(SiO2质量分数为69.47%~72.19%和72.32%~78.6%)、富钠(K2O/Na2O为0.4~0.52和0.4~0.67之间)的碱性岩特征,具有过铝质特征;流纹英安岩和花岗斑岩富集Th、U、Pb等高场强元素和Rb、K等大离子亲石元素,相对亏损Zr、Ti、Ta、Ce等高场强元素和Ba、Sr等大离子亲石元素,表现出轻稀土元素富集,重稀土元素亏损(LREE/HREE分别为9.32~11.59和2.12~8.27),(La/Yb)N值分别为10.59~14.26和1.41~9.47,两者具有明显的负Eu异常(0.41~0.56和0.09~0.32),地球化学特征显示流纹英安岩和花岗斑岩形成于低压环境,属于板内环境;锆石饱和温度计得出两者具有较高的结晶温度,分别为812.5~904.9℃和772.1~826℃;流纹英安岩和花岗闪长斑均具有较大的I Sr含量,较小的εNd(t)值(-7.81~-8.93)。地球化学和Sr、Nd同位素特征显示山南矿区的流纹英安岩和花岗斑岩具有明显的S型花岗岩特征,形成过程中经历了部分熔融和同化混染作用。流纹英安岩和花岗斑岩及铀矿化具有强烈的壳源特征,区域内分布的元古代变质岩中的砂质岩和泥质岩很可能就是两者的源岩。结合前人年代学研究和本次地球化学、Sr-Nd同位素研究结果,说明相山矿田山南矿区内的流纹英安岩和花岗斑岩及相应的铀矿化形成与中生代华南地区岩石圈发生大规模的伸展减薄有关。  相似文献   
76.
为了揭示岩石变形的破坏机理以及岩石材料产生损伤的本质原因,文章对岩石材料变形规律和力学特性进行分析后,再以损伤变量作为影响岩石变形和力学性能变化的内变量,采用能量原理、有效应力原理和统计损伤理论构建了一种基于弹性能释放率的新型岩石统计损伤本构模型。该损伤模型进一步完善了岩石损伤本构模型的理论体系,弥补了传统损伤模型无法合理解释引发岩石破坏原因的不足。利用岩石试验数据对损伤模型的参数进行确定,并将损伤演化模型代入弹性能-应变模型中,分析在加载过程中岩石弹性能变化的规律。结果表明:模型曲线与试验曲线在峰前变形阶段几乎重合,说明损伤模型可以很好地反映岩石的变形特性;在初始加载阶段,岩石的损伤变量随着轴向应变的增大而增大,说明在荷载作用下,岩石内部裂隙逐渐发展发育,使得岩石材料的损伤逐步积累;在围压达到10 MPa以上时,损伤-应变曲线基本重合。同时,在初始加载时刻,损伤-应变曲线增长率急剧上升,大约在岩石应变为0.01%时,损伤-应变曲线趋于平稳变化状态;且由于岩石在峰值应力点附近损伤迅速累积,进而使得损伤变量在数值上快速增大到1,这说明了围压的增大使得岩石破坏极限得到显著的提升。  相似文献   
77.
当前,地下工程围岩蠕变问题仍然存在,蠕变理论需要进一步丰富。岩石蠕变实质上是损伤不断积累的过程,针对蠕变条件下岩石损伤演化情况,文章采用TAW-2000多功能三轴伺服试验系统对取自四川乐山依卜隧道的红砂岩进行三轴蠕变试验,分析不同围压下试样蠕变变形规律,同时以西原模型为基础,结合Weibull分布和Perzyna黏塑性理论,建立一种改进的可以描述岩石蠕变破坏全过程的黏弹塑性蠕变模型。通过划分蠕变阶段来定义临界点损伤变量,从而更为准确地确定加速蠕变启动时间。得出如下结论:(1)模型曲线与试验数据具有良好的一致性,验证了模型的准确性与合理性,说明基于Weibull分布建立的红砂岩黏弹塑性蠕变模型是可行的;(2)基于Perzyna黏塑性理论,建立了可以更加准确的描述加速蠕变的黏塑性应变表达式;(3)文章建立的基于Weibull分布和Perzyna黏塑性理论的三轴损伤蠕变模型能够较好的描述岩石蠕变全过程,克服了西原模型不能描述加速蠕变的缺点。本研究通过定义不同蠕变阶段的临界点损伤变量更好的反映了岩石蠕变变形与损伤之间关系,丰富了岩石类材料的蠕变本构理论。  相似文献   
78.
Re-Os同位素体系在蛇绿岩应用研究中的进展   总被引:2,自引:1,他引:2  
Re-Os不同于由亲石元素构成的同位素体系,在原始上地幔(PUN)部分熔融过程中,母体Re是中等不相容元素,优先进入熔体相,子体Os是强相容元素,富集在残留相中,是研究蛇绿岩的极好示踪剂。在蛇绿岩应用研究中已经取得了4个方面的进展:(1)明确了熔体相的Re/Os和^187Os/^188Os比值高,而残留相的低;(2)铬铁矿中铂族元素矿物(PGM)的Re亏损年龄(TRD)证实了蛇绿岩中复杂的超镁铁岩体是多阶段部分熔融的产物;(3)现代大洋橄榄岩和玄武岩的Re-Os同位素研究表明熔体相和残留相的^187Os/^188Os比值在高于亏损地幔值(DMM)的部分是一致的,而低于DMM的存在不一致性,为研究蛇绿岩中熔体相与残留相是否存在“耦合”关系提供了新的制约因素;(4)揭示了蛇绿岩地幔橄榄岩中含有古大陆岩石圈地幔,这是前所未知的。虽然取得了不少进展,但是由于Re-Os同位素体系用于蛇绿岩研究的时间较短,尚存在一些问题,如显生宙蛇绿岩地幔橄榄岩的定年问题,有待进一步深化研究。  相似文献   
79.
小西南岔富金铜矿床是中国东部陆缘重要金铜矿床之一. 该矿床由北山和南山两个矿段组成, 北山矿段由细脉浸染状硫化物蚀变岩和数条胶黄铁矿为主的硫化物石英细脉组成, 南山矿段由磁黄铁矿为主的硫化物石英脉及纯硫化物脉构成; 它们矿石矿物的流体包裹体稀有气体的同位素实验得出: 3He/4He, 20Ne/22Ne和40Ar/36Ar比值变化分别在0.08~4.45 Ra, 8.8~10.2和306~430之间, 且南山矿段矿物流体包裹体具有较高的3He/4He, 20Ne/22Ne比值, 北山矿段的矿物流体包裹体持有较低3He/4He比值. 从其成矿流体起源与演化以及与矿化阶段的对应关系、成矿时代角度分析, 该矿床的初始热流体应是来自有地幔柱型地幔/软流圈流体参与的洋壳部分熔融产生的熔体, 并与伊泽奈崎(Izanagi ocaneic plate)板块向古亚洲大陆俯冲的大陆边缘环境相对应(123~102 Ma); 北山矿段细脉浸染型矿体是高温含矿流体上升、沸腾的前缘流体与年轻地壳流体发生强烈混合作用后的混合流体交代、结晶作用形成, 胶黄铁矿为主的硫化物石英脉是随后的高温含矿流体充填作用形成; 南山矿段磁黄铁矿为主的硫化物石英脉是中温含矿流体以充填方式为主沉淀结晶形成, 纯硫化物脉是再度上升的中温含矿流体沸腾后的富矿流体充填、沉淀结晶作用形成. 其成矿的动力学过程初步概括为: (1) 伊泽奈崎板块俯冲去气、脱水或部分熔融作用形成含流体、矿质的埃达克质岩浆; (2) 熔体与流体分离形成埃达克质岩浆和含矿热流体; (3) 含矿流体先后上升、并经二次沸腾作用最终形成细脉浸染状与脉状共生的富金铜矿床.  相似文献   
80.
金厂沟梁金矿床是华北陆台北缘大型脉状热液矿床,矿脉类型主要是黄铁矿-石英脉,其次是石英-黄铁矿脉和黄铁矿-黄铜矿石英脉。对其黄铁矿中的流体包裹体He、Ar同位素研究表明:黄铁矿-石英阶段的流体包裹体3He/4He比值为1.03~3.33 Ra,40Ar/36Ar比值为296~499;黄铁矿-黄铜矿-石英阶段的3He/4He比值为4.44~5.95Ra,40Ar/36Ar比值为288~312。这种特征揭示,该矿床流体包裹体的稀有气体组成是由地幔、大气水和地壳流体三端元构成;结合矿床地质特征和形成时代,得出该矿床的初始含矿流体源是MORB地幔和俯冲大洋板片,与岛弧/大陆边缘背景产生的玄武质岩浆基本一致,热流体上升到地壳浅部过程可能受到地壳流体和部分大气水混染。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号