首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   35篇
  国内免费   8篇
大气科学   37篇
地球物理   7篇
地质学   11篇
海洋学   7篇
天文学   5篇
综合类   5篇
自然地理   4篇
  2023年   11篇
  2022年   3篇
  2021年   4篇
  2020年   4篇
  2019年   4篇
  2018年   8篇
  2017年   3篇
  2016年   4篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2011年   3篇
  2010年   5篇
  2009年   6篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  1954年   1篇
排序方式: 共有76条查询结果,搜索用时 20 毫秒
61.
依据国际时间频率咨询委员会(Consultative Committee for Time and Frequency, CCTF) GNSS (Global Navigation Satellite System)时间比对工作组制定的时间传递标准(Common GNSS Generic Time Transfer Standard Version2E, CGGTTS_V2E), 针对GNSS接收机观测到的伪距信号开发了数据处理软件, 用于生成标准格式的CGGTTS文件, 并对其可靠性进行了验证. 结果表明, 与sbf2cggtts软件生成的CGGTTS文件相比, 在同一历元下, 分别利用相同GPS和BeiDou-2卫星观测值计算的星地钟差值基本一致, 互差绝对值不超过0.5ns的差值分别占总数的96%、94%. 以中国标准时间UTC(NTSC) (Coordinated Universal Time (National Time Service Center))为参考, 利用数据处理软件分别对BeiDou-2和BeiDou-3卫星的B1I和B3I双频消电离层组合观测值处理并生成标准格式的CGGTTS文件, 通过分析其星地钟差参数对BeiDou系统时间的性能进行评估. 结果表明, 与BeiDou-2相比, BeiDou-3系统时间的内符合精度提高约28%, 且1 d以上中长期频率稳定度明显优于BeiDou-2.  相似文献   
62.
施春华  李慧  郑彬  郭栋 《地球物理学报》2013,56(8):2594-2602
采用ERA-Interim气象分析资料、云顶亮温TBB资料、Cloudsat云雷达资料、降雨量资料等,对2009年6月10日至12日我国东北地区的一次冷涡天气过程进行研究,重现了该冷涡的精细三维结构和演变过程.分析表明冷涡发生前,东北亚地区处于南北双槽结构之间,随后北槽向赤道发展切断后形成东北冷涡.南槽背景的冷涡热力结构特殊,强冷空气集中在涡内西北象限,暖湿空气在东北象限,南部为相对中性空气,该配置导致北部暖锋强盛,西部冷锋仅在发展初期较强,冷涡过程没有经典挪威学派的气旋锢囚锋出现.冷涡发展初期,狭长冷舌快速入侵南下,冷舌前冷锋对流降水较强,冷舌后部左侧还有暖锋降水;冷涡发展后期,冷锋减弱,冷锋上的高层云停止降水,系统内主要为冷涡北部的暖锋雨层云降水;冷涡成熟后,中心辐合加强,有较强的对流性降水.  相似文献   
63.
南半球10 hPa极地涡旋的多尺度变化特征分析   总被引:1,自引:1,他引:0       下载免费PDF全文
利用NCEP/NCAR 10 hPa月平均高度场资料, 计算了1948\_2007年南半球10 hPa极地涡旋的强度指数P、 面积指数S和中心位置指数(λc, φc)。用它们分析了南半球10 hPa极地涡旋的季节变化、 年际异常及其可能成因, 分析了10 hPa极地涡旋强度与南极涛动的关系。结果表明: (1) 南半球10 hPa极区12月~1月受反气旋控制, 3~10月受气旋控制, 2月、 11月为环流转换季节。(2) 1(7)月反气旋(气旋)指数P\, S均在1970年代后期发生了显著的跃变; 跃变前反气旋(气旋)由极弱(极强)振荡地增强(减弱)至接近气候均值, 跃变后反气旋由极强振荡趋于气候均值, 气旋在偏弱的状态下振荡。(3) 1月反气旋中心位置存在显著的年代际变化, 而7月气旋中心位置的年际变化明显。(4) 臭氧异常可引起南半球10 hPa 1月极地反气旋年际异常(正相关), 但与7月极地气旋异常无关。(5) 1月、 7月极地涡旋强度指数P与南极涛动指数(AAOI)呈显著的负相关, 可由P来表征AAOI。  相似文献   
64.
本文从气候平均角度及年际时间尺度对传统梅雨区(28°~34°N,110°~123°E)的西北部(NW区)梅雨期降水及其与大气环流和海温的关系进行了研究,重点比较其与典型梅雨区梅雨期降水的异同。结果表明:(1)气候平均而言,850 hPa层次上大于40 g·m·kg-1·s-1的水汽输送带无法覆盖NW区,导致该地区在35~37候没有类似于江南地区、长江中下游地区和江淮地区梅汛期集中性降水的特征。(2)1979—2017年共39 a中,NW区有24 a出现了梅雨现象,有15 a为空梅,平均入梅日期为6月27日,比长江流域偏晚13 d,平均出梅日期为7月13日,与长江流域相近,梅雨期平均日降水量与长江流域相当。(3)NW区梅雨期时,雨量偏多的地区在我国黄淮地区,此时江南地区雨量偏少。东亚夏季风系统成员,如南亚高压、西太平洋副热带高压、青藏高原南部梅雨锚槽、低层西北太平洋反气旋等都比长江流域梅雨时偏北。(4)与典型梅雨区不同,NW区的入梅时间与赤道印度洋、赤道中东太平洋等关键区海温没有显著关联。  相似文献   
65.
Seagrass habitats are structurally complex ecosystems, which support high productivity and biodiversity. In temperate systems the density of seagrass may change seasonally, and this may influence the associated fish and invertebrate community. Little is known about the role of seagrass beds as possible nursery areas for fish and invertebrates in China. To study the functioning of a seagrass habitat in northern China, demersal fish and invertebrates were collected monthly using traps, from February 2009 to January 2010. The density, leaf length and biomass of the dominant seagrass Zostera marina and water temperature were also measured. The study was conducted in a Seagrass Natural Reserve(SNR) on the eastern coast of the Shandong Peninsula, China. A total of 22 fish species and five invertebrate species were recorded over the year. The dominant fish species were Synechogobius ommaturus, Sebastes schlegelii, Pholis fangi, Pagrus major and Hexagrammos otakii and these species accounted for 87% of the total number of fish. The dominant invertebrate species were Charybdis japonica and Octopus variabilis and these accounted for 98% of the total abundance of invertebrates. There was high temporal variation in species composition and abundance. The peak number of fish species occurred in August–October 2009, while the number of individual fish and biomass was highest during November 2009. Invertebrate numbers and biomass was highest in March, April, July and September 2009. Temporal changes in species abundance of fishes and invertebrates corresponded with changes in the shoot density and leaf length of the seagrass, Zostera marina.  相似文献   
66.
采用1979—2013年6—8月欧洲中期数值预报中心ERA-Interim逐月再分析资料和2004—2010年6—8月美国国家大气和海洋管理局太阳光谱辐照度资料,利用北京气候中心大气辐射模式,计算了北半球平流层夏季臭氧加热率(Ozone Heating Rate,OHR)和净加热率(Net Heating Rate,NHR),分析了太阳准11 a变化中太阳活动强年与弱年纬向平均OHR(NHR)的差异,并讨论了差异形成的原因。结果表明:太阳活动强年比弱年的紫外辐射明显要强,导致OHR、NHR整层增强,且随高度增加而增加;臭氧浓度在平流层下层较小,在平流层上层较大,该变化导致OHR、NHR有类似的变化型,且稍向高处偏移;OHR、NHR在平流层上层的变化,由紫外辐射和臭氧共同作用,其他地区均为臭氧起主要作用。  相似文献   
67.
采用北京气候中心大气辐射模式(BCC-RAD)、日本气象厅JRA-55月平均再分析资料,研究了北半球冬季低纬度平流层上、下两个温度异常区对太阳周期的响应及其机制。结果表明,太阳活动偏强年,低纬度的上平流层温度暖异常是由臭氧短波加热异常引起的,它在中纬度的上平流层激发出异常强西风,阻碍行星波正常上传,由波破碎驱动的Brewer-Dobson环流也减弱,该环流上升支减弱的动力加热作用导致了低纬度的下平流层暖异常。  相似文献   
68.
利用ERA-interim月平均再分析资料、相关分析和信息流方法,分析了1979~2015年夏半年(5~9月)100 hPa上南亚高压与邻近地区臭氧变化的相互作用。结果表明:除7月外,夏半年南亚高压与南亚高压区臭氧低值(简称臭氧低值)存在相互作用。6月和9月南亚高压和臭氧低值强度变化相互影响,而在5月和8月二者的作用仅仅是单向的。在6月南亚高压和臭氧低值的中部和西部边缘,以及9月南亚高压北部和臭氧低值中心区,臭氧低值增强(减弱)可能是南亚高压增强(减弱)的部分原因,南亚高压增强(减弱)也可能是臭氧低值增强(减弱)的部分原因。在6月南亚高压和臭氧低值的东南部、8月南亚高压和臭氧低值的西部和东部,以及9月南亚高压的西部,南亚高压增强(减弱)可能导致臭氧低值增强(减弱)。在5月南亚高压西部和臭氧低值南部,臭氧低值的增强(减弱)可能导致了南亚高压的增强(减弱)。根据相关分析,推测臭氧变化对南亚高压变化的可能影响机制如下:当南亚高压区臭氧浓度出现正异常时,辐射加热在其上部(下部)为负异常(正异常),导致高层(低层)异常辐合(辐散),从而导致下沉异常。高层异常辐合与下沉异常最终使南亚高压异常减弱。而臭氧浓度负异常导致南亚高压呈现正异常的过程与上述过程相反。  相似文献   
69.
采用1950—2018年中国753站逐日气温和降水资料及NCEP/NCAR逐日再分析资料,确定了1951—2017年冬季中国南方强持续性冰冻雨雪事件,并对其时空特征、区划及事件爆发日的环流特征进行分析。结果表明:1)中国南方持续性冰冻雨雪事件存在显著的2~3 a周期变化,且1985年前后发生了突变,虽然近年来其强度呈显著减弱趋势,但仍然发生了多次强持续性冰冻雨雪事件;2)持续性冰冻雨雪事件在中国南方中西部发生频次高、持续日数长,在中国南方中东部则强度更大;3)中国南方37次强持续性冰冻雨雪事件可划分为华中型、华南型和西南型3类;4)3类持续性冰冻雨雪事件爆发日,欧亚大陆500 hPa位势高度异常呈现北高南低,蒙古高压显著偏强、中心南进,该配置有利于北方冷空气向南输送,且南支槽显著加深,水汽向北输送活跃。三者的不同之处在于蒙古高压强度及影响范围存在差异,其中西南型最强、范围最大、南伸显著,华南型次之;华中型、华南型的水汽输送受南支槽和副热带高压共同影响,而西南型的水汽输送仅受南支槽调控。  相似文献   
70.
利用化探精查技术检测二氧化碳气藏   总被引:1,自引:2,他引:1  
郭栋  李红梅  程军  刘伟 《物探与化探》2005,29(3):205-208
化探精查技术检测二氧化碳气藏异常方法是基于油气渗透理论,通过对CO2(土壤或水中)和土壤全烃、碳酸钙、汞、同位素、荧光等地表地球化学指标组合异常的分析,结合地质—地球物理资料,预测CO2气藏分布。笔者通过对济阳坳陷花沟地区化探方法、化探资料和气藏分布的综合分析,在区域地球化学背景分析研究基础上,指出区带异常,并结合油气地质、地球物理资料,对圈定的化探异常区进行分级评价,预测CO2气藏聚集的有利区带,探索化探精查预测技术检测CO2气藏的方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号