首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   25篇
  国内免费   14篇
地球物理   3篇
地质学   81篇
综合类   24篇
  2019年   7篇
  2018年   16篇
  2017年   1篇
  2016年   8篇
  2015年   5篇
  2014年   9篇
  2013年   12篇
  2012年   6篇
  2011年   11篇
  2010年   7篇
  2009年   4篇
  2008年   13篇
  2007年   3篇
  2006年   4篇
  1999年   2篇
排序方式: 共有108条查询结果,搜索用时 146 毫秒
61.
:以鄂尔多斯盆地薛岔地区长6储层为例,利用 X衍射、铸体薄片分析鉴定等方法,分别从储层的物性特征、岩石学特征以及孔喉结构特征3方面对储层的基本特征进行了研究,并利用水驱实验对研究区低渗透储层的敏感性及其主控因素进行了研究和分析.实验结果表明储层速敏指数分布范围为11.5%~53.7%,储层具中等速敏;去离子水伤害率为39.12%~69.42%,储层总体属中偏强水敏性;盐度临界值为20000~40000mg/L,储层具有中等偏强盐敏性;岩心酸敏指数介于-25.1%~19.0%之间,储层具有弱酸敏性;最大碱敏指数为8.81%~36.3%,属弱碱敏性.研究区黏土矿物类型和含量以及孔隙结构是储层敏感性最为直接的控制因素;高岭石为速敏性矿物,其相对含量直接影响到储层的速敏性;伊利石和伊蒙混层为盐敏和水敏性矿物,其相对含量直接影响到储层的水敏性和盐敏性,因此要着重对速敏、盐敏、水敏带来的储层伤害进行防护和治理.   相似文献   
62.
任颖  孙卫  明红霞  张茜  霍磊  曹雷  陈斌 《现代地质》2016,30(5):1124-1133
利用高压压汞、恒速压汞、核磁共振、扫描电镜、X射线衍射等资料,对姬塬地区长6段不同成岩相储层开展可动流体赋存特征及其影响因素分析。结果表明:(1)研究区三类有效成岩相储层,绿泥石膜胶结—残余粒间孔相、长石溶蚀相及高岭石胶结相,微观孔喉差异明显,主要体现在喉道上;(2)从T2谱分析可知,绿泥石膜胶结—残余粒间孔相孔喉半径均匀,连通性好,可动流体饱和度最高,长石溶蚀相次之,可动流体饱和度中等,高岭石胶结相孔隙类型单一且小,可动流体饱和度最低;(3)孔喉半径、主流喉道半径、孔喉半径比及有效孔喉体积是引起不同成岩相储层可动流体赋存特征差异的主控因素,渗透率的大小是影响其饱和度大小的重要因素之一,高岭石和伊利石含量的增多对其可动流体赋存具有破坏作用。  相似文献   
63.
针对常规压汞实验不能区别孔隙和喉道的弊端,应用恒速压汞技术对低渗透储层孔喉进行了定量评价,并深入分析了
影响低渗透储层可动流体饱和度的主控因素。结果表明:渗透率越小,喉道半径分布范围越窄,其峰值也越小;反之,渗透率越大,
喉道半径分布范围就越宽,其峰值也越大;不同物性的样品其孔隙分布特征不显著,主要体现为喉道分布特征不同。可动流体由
孔隙和大喉道中的流体共同组成,与所处空间位置无关,只与孔隙和喉道半径有关。核磁共振可动流体的有效孔隙体积和有效喉
道体积的共同下限半径也就是T2 弛豫时间所对应的半径。   相似文献   
64.
通过铸体薄片、扫描电镜、高压压汞、X线衍射、粒度分析及物性等资料,分析了苏东南地区主要的成岩作用类型及其对储层物性的影响。定量分析了各类成岩作用对储层孔隙的贡献率,结果发现胶结物晶间孔对该区储层孔隙贡献程度不可忽视,晶间孔对储集空间的贡献率平均为36.31%。随后对孔隙模式演化进行了定量分析,采用对不分选状况下未固结砂实测的初始孔隙度关系式恢复砂岩原始孔隙度,通过压实后粒间剩余孔隙度的恢复、压实后损失孔隙度的恢复、胶结作用引起的砂岩孔隙度降低和溶蚀作用引起孔隙度的增加幅度计算公式,实现了各成岩阶段孔隙度的定量分析。定量计算结果与实验室室内物性测试分析结果基本吻合,误差为2.5%,检验了研究方法的合理性,表明研究结果具有一定的可靠性。   相似文献   
65.
研究区主力产气层山1储层属于致密气藏,为了摸清有效储集层的形成机制、寻找勘探开发的有利区域,应用铸体薄片、扫描电镜、核磁共振、恒速压汞等实验手段开展成藏动力及成藏模式研究。结果表明:早白垩世为天然气充注的主要成藏期,水相封存天然气分子的最小孔喉半径和天然气充注的孔喉半径下限分别为0.093μm和0.25μm,天然气充注的最大毛细管阻力为1.16MPa,流体过剩压力是致密砂岩气藏天然气运移的主要动力和阻力;天然气主要聚集在过剩压力高值背景下的低值区,山1段过剩压力小于6 MPa的区域有利于天然气的聚集,隔夹层密度越小、厚度越薄的区域含气饱和度越高;研究区天然气充注模式存在4种模式,煤层连续发育厚度大、储层整体特征优,源储层间压差大、储层顶面的隔夹层和大段较厚泥岩产生的欠压实过剩压力有利于储层段的天然气保存,成为天然气开发的"甜点"。  相似文献   
66.
鄂尔多斯盆地板桥-合水与姬塬地区长6储层主控因素分析   总被引:1,自引:0,他引:1  
鄂尔多斯盆地西南部板桥-合水地区与西部姬塬地区延长组长6储层,虽然处于同一层位但物性存在较大差异。通过铸体薄片、SEM、X射线衍射等实验手段并结合测井资料,主要围绕沉积作用、成岩作用应用类比法分析了2个地区储层物性产生差异的原因,明确了储层主控因素。研究表明:沉积作用对储层的控制是先天性的,是控制储层物性好坏的决定性因素,在沉积作用控制储层物性3个因素——岩石碎屑组分的含量、结构成熟度、沉积微相中沉积微相对储层物性的影响最大;成岩作用是控制储层层内孔喉结构差异的主要因素,其中压实作用对储层的物性破坏最大,使2个地区的孔隙度分别丧失了27.58%和22.31%。总而言之,储层的物性受成岩作用、沉积作用及构造作用的共同影响,其中导致2个地区储层物性产生较大差异的主控因素是沉积作用中的碎屑组分含量、沉积微相以及成岩作用中的压实作用。  相似文献   
67.
通过岩心观察并综合运用铸体薄片、扫描电镜、X射线衍射、物性以及压汞等基础测试资料,对姬塬地区长6致密砂岩储层的岩石学、孔隙结构等特征展开了研究,系统分析了不同类型成岩相及其微观孔喉特征。依据储层物性,结合主要的沉积特征、成岩矿物、填隙物及孔隙类型,研究区砂岩储层按照储集性能的好坏可划分为Ⅰ类(绿泥石膜胶结-残余粒间孔相)、Ⅱ类(长石溶蚀相)、Ⅲ类(高岭石胶结相)、Ⅳ类(碳酸盐胶结相)4种成岩相带,其中Ⅰ类、Ⅱ类储层物性较好,是研究区储层发育的有利成岩相带,Ⅲ类、Ⅳ类则为较差储集岩相带。选取了自然伽马、声波时差、电阻率等对成岩相响应较为敏感的测井曲线,利用岩心、薄片资料刻度测井曲线,研究各成岩相在自然伽马、声波时差等测井曲线上响应特征的差异性。通过对成岩相分布特征及其测井响应特征进行研究,可以合理评价低渗透砂岩储层并预测优质储层发育带,同时为后续的油气地质勘探提供可靠的理论基础。  相似文献   
68.
基于铸体薄片、扫描电镜、岩心照片、恒速压汞等资料,综合考虑物源、黏土矿物类型、孔隙类型、成岩作用等参数将王盘山长61储层划分成6种不同组合类型成岩相,其中优势储集成岩相为高岭石+绿泥石胶结-粒间孔相、高岭石胶结-溶孔+粒间孔相、绿泥石+高岭石胶结-溶孔相等。研究表明:不同类型成岩相的微观孔隙结构特征及测井响应特征不同,各成岩相微观孔喉差异明显,尤其体现在毛管压力曲线和喉道上,喉道半径与渗透率的相关性好于孔隙半径与孔隙度、渗透率的相关性,优势成岩相孔喉半径较均匀、连通性好、渗流能力较强,相同进汞压力条件下进汞饱和度高;利用自然伽马、声波时差、电阻率等测井曲线,归纳了不同成岩相的测井响应特征,建立了各成岩相测井响应识别模板,确定了不同成岩相的测井响应定量判别标准,最终实现储层纵向上成岩相的识别与划分,为低渗透砂岩储层甜点预测提供重要参考。  相似文献   
69.
张茜  孙卫  任大忠  屈雪峰  雷启鸿 《地质论评》2015,61(5):1192-1198
应用常规物性、铸体薄片、扫描电镜、常规压汞、核磁共振等实验,着重分析姬塬地区长6油层组微观孔隙结构类型划分及其对可动流体饱和度的影响。研究表明:该区的储集空间主要为原生粒间孔、其次为长石溶孔;根据毛管压力曲线形态以及相应的参数,将储层孔隙结构分为Ⅰ类、Ⅱ类、Ⅲ类、Ⅳ类,四类孔隙结构对应储集空间不同,其储集性能和渗流能力依次变差;核磁共振测得T_2谱图形态与其所对应孔喉半径进汞饱和度分布形态相似,T_2值大小与孔喉半径大小呈正相关性,孔喉半径是影响可动流体分布的主要因子,渗透率与可动流体饱和度呈较好的正相关性,是表征孔隙结构渗流能力的直观参数。  相似文献   
70.
王瑞飞  陈明强  孙卫 《矿物学报》2008,28(2):215-220
对鄂尔多斯盆地沿25区块、庄40区块长6油藏进行精细描述,指出微裂缝对提高储层的渗流能力,提高特低渗油藏开发水平具有十分重要的意义.阐述了特低渗透储层的岩块、显裂缝系统及其各自特征,指出显裂缝大致由三组裂缝组成.研究认为:岩块系统包括基质和微裂缝两部分,微裂缝一般长度小于200 μm,规模小;两区块特低渗储层微裂缝呈条带状展布,且呈平行或雁式排列,具有明显的方向性,条带性随着岩性的变化而变化;可将微裂缝划分为有效缝和无效缝,有效缝对渗流起作用,无效缝充填方解石,对渗流不起作用.微裂缝和基质的储、渗性能差别很大,沿25区块微裂缝的储集能力是基质的0.0377倍,渗流能力是基质的42倍;庄40区块微裂缝的储集能力是基质的0.0337倍,渗流能力是基质的78倍.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号