首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   18篇
  国内免费   7篇
测绘学   6篇
大气科学   27篇
地球物理   1篇
海洋学   1篇
  2023年   2篇
  2022年   3篇
  2020年   2篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2012年   3篇
  2010年   2篇
  2009年   1篇
  2005年   1篇
  2004年   5篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
21.
为解决月球对风云三号卫星微波湿度计在轨实时辐射定标的影响问题,该文根据风云三号卫星微波湿度计在轨实时观测数据分析,通过多项式拟合分析技术,建立修正模型,消除月球影响,得到合理的辐射定标结果。风云三号卫星微波湿度计在轨实测数据分析表明:月球对风云三号卫星微波湿度计在轨辐射定标结果影响最严重时一天内可干扰4~5条轨道,每条轨道有近100个扫描周期受到污染。月球影响致使冷空定标观测数据跳升1000个计数值,如果不进行污染滤除会造成对地观测亮温下降约20 K,导致辐射资料无法同化进入数值天气预报模式。通过与同类载荷的交叉比对分析,修正月球影响后,风云三号卫星微波湿度计在轨实时辐射定标结果精度与在轨测试结果相当。  相似文献   
22.
风云三号卫星被动微波反演海洋上空云液态水含量   总被引:2,自引:0,他引:2  
窦芳丽  商建  吴琼  谷松岩 《遥感学报》2020,24(6):766-775
云液态水含量是气候和水循环研究的重要云微物理参数,也是目前气候变化研究中的最不确定因素之一。通过极轨气象卫星被动微波观测的光谱和极化特征能够实现对云液态水含量的直接测量,本文介绍了一种基于风云三号卫星微波成像仪(MWRI)观测亮温的全天候云液态水含量反演算法,利用快速辐射传输模式、云模型和大气廓线库建立MWRI模拟亮温库并训练反演系数的宽气候态物理算法可以保证算法系数在不同季节和不同地区的适应性。同时提出了一种基于观测增量(O-B)筛选晴空像元并对算法系数及比例因子进行订正的方法。利用统计直方图方法和卫星间交叉比对方法对反演产品精度进行了检验,统计直方图方法检验结果表明,FY-3C云水反演误差为0.028 mm,FY-3D为0.025 mm,与国外同类产品的精度相当;与低轨卫星微波辐射计GMI云水产品的交叉比对结果表明,两者具有较高一致性,均方根误差为0.0325 mm。FY-3C/3D CLW产品目前已经投入业务应用,上下午星组网能够一天内基本覆盖全球,实现全球云水分布监测。  相似文献   
23.
吴琼  窦芳丽  郭杨  谷松岩 《气象》2020,46(1):73-79
中国自主研制的第二代极轨气象卫星的首颗业务星风云三号C星(FY-3C)于2013年9月23日发射升空。微波成像仪(MWRI)作为FY-3C上携带的重要微波载荷之一,能够实现对大气、海洋和陆地的全天时监测。其中,MWRI海上大气可降水量(TPW)产品在数值预报模式以及气候变化研究中具有很重要的应用价值,但是应用效果的好坏往往受产品精度的制约。使用长达4年的卫星观测资料,通过MWRI TPW业务产品和无线电探空及专用传感器微波成像仪(SSMIS) TPW业务产品的比较,对MWRI TPW产品(包括轨道产品、日产品和月产品)的质量进行检验。结果表明,轨道产品和地面实际观测的探空数据的平均相对误差在7%左右,均方根误差为2.6 mm;日产品和SSMIS日产品的均方根误差约为3 mm,和探空日产品的均方根误差小于2.1 mm;月产品和SSMIS月产品的均方根误差小于1.3mm。表明FY-3C MWRI TPW业务产品长期以来一直稳定运行且精度较高,具备实际应用潜力。  相似文献   
24.
青藏高原地区TRMM PR地面降雨率的修正   总被引:2,自引:2,他引:0       下载免费PDF全文
为掌握并改进青藏高原地区TRMM卫星降水雷达 (precipitation radar,PR) 地面降雨率准确度,统计分析了2005—2007年TRMM PR 2A25资料和逐小时地面雨量计,结果表明:青藏高原地区TRMM PR地面降雨率在层云降水时平均偏低35%,在对流云降水时平均偏高42%。Z-R关系的适用性是PR产生偏差的原因之一,研究将TRMM PR层云降水模型中20℃层Z-R关系的初始系数A和b分别修正为0.0288和0.6752,对流云降水模型中20℃层的初始系数A和b分别修正为0.0406和0.5809,得到两类降水模型0℃层与20℃层之间不同高度Z-R关系的更新系数。检验结果表明,修正降水模型后能够提高青藏高原地面降雨率测量的准确度。  相似文献   
25.
基于大气辐射传输理论分别建立Ku波段和C波段的降雨模型,模拟热带气旋降雨区洋面的雷达回波并反演了洋面10 m风场,用于研究降雨对测风的影响以及风云三号双频风场雷达 (WFR) 的测风能力。分析表明:回波的衰减或增强取决于降雨衰减项和后向散射项的相对大小;热带气旋的降雨使反演风速偏小,风向精度降低,Ku波段相对于C波段更易受影响,在高风速 (超过30 m·s-1) 条件下,可达5~20 m·s-1的负风速偏差。反演结果表明:双频反演的新方法能够结合Ku波段与C波段的优势,双频最大似然估计 (MLE) 方法在分辨率上优于C波段单频反演,相对Ku单频反演能降低降雨对测风的衰减作用,结合双频MLE方法和C波段单频反演优势的分区反演方法可以显著减小降雨偏差,提高风速反演精度,在有风云三号湿度计同步观测的条件下,是提高热带气旋降雨区测风精度的有效手段。  相似文献   
26.
散射计海面非气旋风场块状模糊去除方法   总被引:1,自引:0,他引:1       下载免费PDF全文
利用最大似然法 (MLE) 对散射计数据反演得出的风矢量,一般存在多个模糊解,故需采用圆中数滤波法进行模糊去除。但传统圆中数滤波法难以解决风场反演中块状模糊问题。该文根据散射计非气旋性第1风场的空间分布特性,归纳出一套适合散射计的加强型圆中数滤波块状模糊去除方法,并探讨了其适应性。该方法定义简单,计算量小,且易收敛。利用欧洲EUMETSAT提供的部分ASCAT (Advanced SCATterometer) L2原始数据对该方法进行验证结果表明,对于非气旋风场分布情况,该方法在利用其他工具去除台风气旋覆盖区域后,能有效解决非气旋区域风场块状模糊问题。  相似文献   
27.
该文通过辐射传输模拟计算和匹配数据统计分析实现了FY-2A和GMS-5红外通道间的辐射定标.以辐射定标为基础将FY-2A红外通道和GMS-5红外A通道的遥感资料融合应用, 可以得到时间分辨率更高、空间视野更为广阔的静止卫星遥感资料.  相似文献   
28.
2023年4月16日09时36分(北京时)中国首颗降水测量卫星—风云三号G星(FY-3G)成功发射,本文在介绍风云三号降水星技术特征的基础上,着重分析FY-3G降水探测能力及在暴雨监测中的应用前景。结果表明:卫星轨道高度407 km、倾角50°,装载了Ka/Ku双频降水测量雷达、微波和光学成像仪的FY-3G卫星,可对影响中国大部分地区的台风、暴雨、强对流等灾害性天气系统三维结构进行探测。FY-3G在设计层面上,降水探测能力与目前美国第二代全球降水测量计划(GPM)核心星(GPMCO)相当,在载荷类型、数量、通道设置等方面优于GPMCO卫星。FY-3G业务运行后将与风云三号上午、下午和黎明星等其他极轨气象卫星以及风云高轨静止卫星组成风云降水探测星座体系,提升风云卫星星座的降水总体探测能力,为气象防灾减灾提供更强的基础支撑。  相似文献   
29.
谷松岩 《气象》1998,24(8):26-28
通过空间结构函数分析法,分析了风云二号扫描辐射计可见光通道的噪声。计算结果表明,风云二号扫描辐射计可见光4个通道的噪声水平不完全一样,其中通道1的等效噪声计数值最大,为0.51,其它3个通道的等效噪声计数值为0.42 ̄0.45。  相似文献   
30.
准确测量大气中云和气溶胶的辐射特性对数值天气预报和气候变化具有重要意义。搭载在风云三号降水卫星上的偏振载荷是国内首个具有短波红外通道的多角度偏振成像仪(Polarization and Multi-Angle Imager, PMAI),计划于2023年年初发射,为气溶胶-云-降水观测链条提供重要支撑。该仪器运行在非太阳同步的倾斜轨道,可提供3 km(星下点)空间分辨率和700 km幅宽的图像。PMAI的观测通道包括1030 nm、1370 nm、1640 nm的偏振通道和相应的非偏振通道,可提供14个角度的观测信息。PMAI将利用自然目标的在轨替代定标和同平台仪器的交叉定标,实现5%的辐射测量精度。观测和仿真数据表明PMAI拥有描述云和气溶胶特性的独特优势。全新的短波红外通道的多角度偏振测量可以优化云相态识别和云微物理参数反演、气溶胶的地气解耦以及地表方向反射特征的表述。处于非太阳同步轨道的PMAI具有独特观测几何,可以获得大气粒子辐射更宽的散射角分布信息。此外,PMAI可联合同平台中分辨率光谱成像仪的可见近红外和热红外通道的观测信息,进行云和气溶胶的协同反演。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号