首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   6篇
  国内免费   18篇
地球物理   2篇
地质学   29篇
自然地理   4篇
  2019年   5篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   7篇
  2006年   1篇
排序方式: 共有35条查询结果,搜索用时 358 毫秒
21.
亚高山不同植被类型区的雨季岩溶溶蚀速率研究   总被引:5,自引:0,他引:5  
关于岩溶溶蚀速率,前人在研究中肯定了岩溶区内CO2浓度的时空变化对溶蚀速率的驱动作用,然而不同的植被条件产生的土壤理化性质差异和变化对溶蚀速率的方向和强度也具有较大的影响.通过野外溶蚀标准试片法,测试得出重庆金佛山岩溶区碧潭泉和水房泉两泉域4种典型植被类型下的5个测试点的雨季绝对溶蚀量和平均面积溶蚀量.测试结果表明不同植被条件甚至同一植被类型下不同海拔下岩溶区石灰岩标准试片的溶蚀速率都存在较大差异,5个测试点溶蚀量由大到小依次为水房泉竹林地、水房泉林地、水房泉草地、碧潭泉林地、碧潭泉灌草丛.通过测试点的土壤基本理化性质分析得出以下结论:在研究区研究时间内的降雨量、温度差异的基础上,除了土壤CO2浓度,土壤有机质也是控制金佛山两泉域岩溶速率的主要因素之一.  相似文献   
22.
重庆金佛山泉水地球化学特征及其空间分布意义   总被引:2,自引:1,他引:1       下载免费PDF全文
2006年7月和9月在重庆金佛山地区选取22个地下水出露的泉点.对泉水的地球化学性质进行详细调查。利用野外和实验室测量手段得到了主要阴离子和阳离子浓度与物理化学参数。分析得知:研究区泉水的水化学类型为Ca-HCO_3和Ca、Mg-HCO_3;结合地质和地貌背景把它们分为6个泉群,分别讨论各泉群的空间分布意义;估算泉水方解石(SI_C)、白云石(SI_D)和石膏(SI_G)的饱和指数,即可反映地层岩性、地形和地下水的运移时间对水质的影响,该区地下水基本上是来自大气降水的下渗.没有深部含水层的上升混合.这些泉水的地球化学特征以及它们的空间分布规律能够很好地反映区内地质状况.该研究可以为金佛山地区地下水资源的调查和环境保护提供基础数据。  相似文献   
23.
岩溶洼地在淹没条件下的消水是一种特殊的有压管道流,如何测定这种管道流的流量是岩溶水文研究中的一大难题。本文分析了岩溶有压管道流的特殊性,提出了用洼地库容变化推求H~Q关系的基本理论和方法。利用重庆市青木关地下河甘家槽洼地的消水资料详细阐述了在淹没条件下入库流量、库容退水流量和在某一水位条件下的消水总量的推求方法。文中还介绍了在岩溶洼地水位观测站的设置方法。   相似文献   
24.
重庆市统景温泉水化学特征及混合作用   总被引:1,自引:1,他引:0  
为了探讨温泉水的热储温度、深部热水与冷水的混合作用,以期为勘探、评价和合理开发利用温泉资源提供科学依据,文章对重庆统景温泉、岩溶地下水和地表水物理化学指标进行监测和分析。结果表明:(1)温泉水化学类型为SO4-Ca·Mg型,浅层岩溶水为HCO3-Ca·Mg型,温塘河为HCO3-Ca型;温泉水TDS、Ca2+、Mg2+、SO42-、Si、B、Sr高于岩溶地下水和地表水,主要与温泉水流经碳酸盐岩热储层并发生强烈的水岩作用有关。(2)不同地热温标法的对比应用发现,阳离子和玉髓地热温标法不适用,而无蒸汽损失石英和修正后的SiO2地热温标法更适于计算统景温泉热储的温度,利用这两种方法算出来的热储平均温度为86 ℃。(3)通过Na-K-Mg三角图判断出岩溶地下水在深部含水层与地下热水发生混合。利用混合模型和硅-焓图解法估算出鸳鸯泉中冷水的混入比例分别为89%、86%;2号井中冷水的混入比例分别为80%、79%。2号井冷水混入比例比鸳鸯泉低,可能受2号井周围水泥护壁的影响。   相似文献   
25.
为了解不同水位变化影响下的河水与地下水侧向交互带地球化学特征动态,以重庆市马鞍溪为研究对象,选取丰水期向枯水期过渡的10-12月为研究期,对河水、地下水及交互带的水位、水温、溶解氧(DO)、pH值、电导率(EC)进行监测,结合对水体主要离子浓度的分析。结果表明,随枯水期到来,侧向交互带水位发生较大变化,交互带与河水间的水位梯度缩小,河水入渗动力逐渐减弱。水位的变化及入渗水温的降低,使交互带微生物活动减弱,pH值上升且变幅减小,DO上升。在其影响下,交互带EC下降,变幅减小,交互带对NO3-、SO42-的净化能力降低,对Mn、Zn等重金属固定能力增强。通过分析交互带地球化学特征的变化,可推断出随马鞍溪枯水期的到来,侧向交互带边界由距河岸30~50 cm移动至距河岸30 cm以内。  相似文献   
26.
利用HOBO小型自动气象站、WGZ21型光电数字水位计和CTDP300型在线水质监测仪,对典型岩溶槽谷地下河系统暴雨条件下水文水化学动态变化进行了连续监测,运用WATSPAC软件计算方解石饱和指数(SIc)和CO2分压(PCO2)。分析了降雨过程中,地下河系统水文水化学动态变化特征。结果表明:在降雨过程中,地下河系统总体以稀释效应为主,对降雨的响应速度快。其中,地下河入口水化学变化受降雨稀释效应和外界环境因素共同影响,变化复杂。出口水化学变化以稀释效应为主,较入口规律。强降雨初期主要由来自中下游岩溶裂隙和洼地对地下河管道的快速补给;降雨后期和降雨过程结束后主要由来自上游岩口落水洞的注入补给。青木关流域岩溶发育程度高,岩溶管道流畅通性良好。强降雨形成的短时地表产流集中注入、降雨入渗经裂隙的快速补给对地下河水质的好坏造成直接影响。  相似文献   
27.
由于特殊的地理环境,金佛山自然保护区的垂直地带性岩溶生态特征明显.通过研究发现,金佛山在不同海拔地质背景基础上,土壤、物种多样性和山上山下两种不同特征的岩溶动力系统.土壤分带性主要表现为:从山下向山顶依次为黄壤、暗黄壤、黄棕壤和棕壤.物种多样性主要表现为:植被种类繁多,动物类型复杂多样,是同类地区所罕见的,大大丰富了我国野生生物基因库.岩溶动力系统主要表现为:土壤CO2和水化学特征的差异显著,从而形成了山上山下两个不同特征的岩溶动力系统,山下岩溶作用明显强于山顶.  相似文献   
28.
不同时间段青木关岩溶地下河水化学变化主导因素分析   总被引:3,自引:2,他引:1  
利用多参数水质分析仪,对典型岩溶槽谷区重庆青木关岩溶地下河出口姜家泉的月尺度、农耕期和暴雨期3个不同时间段的水化学动态变化特征进行监测,通过主成分分析法,研究这3个不同时间段水化学变化主导因素的异同。结果表明:月尺度期间,电导率、pH值和Ca~(2+)、Mg~(2+)、K~+、Na~+、HCO_3~-受雨水稀释作用,使丰水期低于枯水期;水化学变化主要受5个主成分影响,累积方差贡献率为90.75%,但其主导因素是水-岩作用。农耕期,降雨携带残余的粪肥、氮磷钾肥汇入地下河,电导率和Cl~-、NO_3~-、K~+、Na~+浓度升高;水化学变化主要受3个主成分影响,累积方差贡献率为87.81%,但其主导因素是施肥活动。暴雨期间,各离子浓度变化经过平稳期、上升期、稳定期、特殊期4个阶段。上升期,降雨对地下河影响最大,导致水-岩作用增强,电导率和Ca~(2+)、HCO_3~-浓度上升;对地表土壤和化肥的冲刷淋溶作用显著,导致Al、Fe、Cl~-、K~+、Na~+和NO_3~-浓度明显上升。水化学变化主要受4个主成分影响,累积方差贡献率为80.09%,但其主导因素是水-岩作用、地表土壤和养分流失。  相似文献   
29.
典型岩溶泉主要化学成分来源及地球化学敏感性研究   总被引:1,自引:0,他引:1  
为定量研究岩溶区突出的地球化学敏感性和脆弱性,引入地球化学敏感指数概念,以重庆金佛山水房泉为例,利用2016年1月至12月观测的水化学数据,对水房泉的主要化学成分来源及地球化学敏感性进行研究。结果表明,水房泉水化学类型为Ca-HCO3型和Ca-HCO3·Cl型;岩溶作用与人类活动综合影响下, HCO3- 、Cl- 和Ca2+成为研究区主要阴阳离子,Cl-主要来源于人类旅游活动造成的污染物,SO42- 主要来源于硫酸型酸雨沉降;岩溶作用的季节变化使得HCO3-、Ca2+成为敏感指数最高的阴阳离子;水房泉的宏量元素地球化学敏感性指数在旅游活动影响下,除NO3- 外均有不同程度的升高,其敏感性指数依次为HCO3- > Ca2+ >Na+ > SO42- > Cl- > NO3- =K+ >Mg2+ 。受人类活动影响,岩溶泉水化学表现的更为敏感,减少并净化人类活动污染物、增强游客环保意识等措施对岩溶泉的保护至关重要。   相似文献   
30.
通过野外溶蚀试片和测量土壤CO2浓度、水分、孔隙度、pH值和有机质含量的方法,探讨不同土地利用方式下土壤环境因子及其相互耦合对岩溶溶蚀速率的影响。研究结果表明,金佛山国家自然保护区不同土地利用方式下的平均溶蚀速率差异显著,总体表现为:竹林地>林地>草地>灌丛地>灌草丛地。不同土地利用方式下的土壤pH值与溶蚀速率呈很好的负相关,土壤水分含量、孔隙度与溶蚀速率呈正相关。山顶岩溶作用明显强于山下,这与重庆市百年一遇的大旱不无关系。土壤环境中CO2浓度、水分、孔隙度、pH值和有机质含量影响着岩溶溶蚀速率,同时这些土壤环境相互耦合也影响着岩溶溶蚀速率。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号