首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   7篇
  国内免费   11篇
大气科学   21篇
  2024年   1篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
11.
热带季节内振荡与南海热带气旋活动的关系   总被引:1,自引:0,他引:1  
利用1949—2009年台风年鉴和NCEP/NCAR再分析资料分析了热带季节内振荡(ISO)与南海热带气旋活动的关系。主要结论包括:(1) 针对南海地区定义了纬向风指数,经验证该指数能较好描述南海大气ISO的具体特征;(2) CPC120指数反映的对流空间尺度相对于南海小尺度海域太大,且不能很好判明南海地区气旋活动归属于活跃与否两类,这从反面证明了纬向风指数对南海地区热带ISO活动的适用性;(3) 利用纬向风指数把热带ISO活动划分了8个位相,发现其位相变化与南海热带气旋活动有较好的对应关系:不活跃期(第4~6位相)时,气旋在南海生成和登陆均明显减少,而在活跃期(第7~3位相)时情况相反;(4) 合成分析表明,热带ISO东传时,伴随对流中心位置的东移,南海气旋活动表现也不同,其活跃期以第2位相特征最明显,此时南海地区对应强对流和气旋式切变,同时副高强度较弱位置偏东,这些均有利于南海气旋的生成和发展;不活跃期则情况相反,以第6位相特征最明显;(5) 进一步从能源供应角度来探讨发现,南海地区的水汽凝结加热中心、强对流中心及水汽通量散度均配合一致。此外,活跃位相时整层热源垂直剖面均反映南海上空为强上升运动和中层加热;不活跃位相则情况相反。因此,热带ISO东传也会影响南海上空加热配置,从而影响热带气旋活动。   相似文献   
12.
2011年长江中下游旱涝急转成因初步分析   总被引:2,自引:0,他引:2  
以2011年1~6月长江中下游"旱涝急转"事件为例,研究了长江中下游旱涝急转与大尺度环流和海温异常的关系,初步得到以下引发旱涝急转的原因:(1)中高纬度大气环流出现快速调整,迅速由强冬季风形势调整为两槽一脊环流形势所控制,进而造成长江中下游由受中高纬度系统控制转变为冷暖空气对峙之地;(2)西太平洋副热带高压位置和强度迅速调整,1~5月来自热带地区的水汽输送条件差,长江中下游地区水汽辐合较常年明显偏弱。6月,水汽输送和收支状况发生根本性转变,长江中下游表现为显著的水汽辐合中心,且明显强于常年;(3)6月青藏高原上空存在显著的气旋性异常环流,利于对流活动发展,受其底部异常西风的影响,对流活动频繁地东传至长江中下游地区,增强了梅雨锋的强度,先后引发了5次强降水过程;(4)前期持续的La Ni?a事件及其变化通过影响Walker环流、西太平洋副热带高压等大气环流系统,为旱涝急转事件的发生提供了有利的背景条件。  相似文献   
13.
北京地区高速公路道面结冰特征及气象条件   总被引:2,自引:0,他引:2       下载免费PDF全文
通过对2007—2010年北京市气象局交通气象监测站所采集的数据进行分析,研究了北京市高速公路道面结冰特征及气象条件。结果表明:北京市的道面结冰主要出现在西北部和城市环线高速公路;结冰次数年际变化显著,且同降水和气温之间关系密切。除此之外,北京地区高速公路内、外车道的结冰时刻均存在显著日变化,80%以上的结冰事件发生在20:00(北京时,下同) 到08:00之间,又以发生在后半夜为主,且前半夜结冰的持续时间明显长于后半夜。发生降雪结冰的气象条件:道面温度和气温均低于0℃,且道面温度略高于气温,环境风速较小,一般低于4 m·s-1。  相似文献   
14.
热带MJO和ENSO对西北太平洋热带气旋影响研究综述   总被引:1,自引:0,他引:1  
对西北太平洋热带气旋的活动规律作了综合评述,简单回顾了热带季节内振荡(MJO)特征和厄尔尼诺/南方涛动(ENSO)特征以及两者间关系,较系统地总结了近年来国内外学者关于MJO和ENSO对西北太平洋海域热带气旋活动影响和机理等方面的研究成果。讨论的热带气旋活动特征包括源地、频数、路径、强度、生命期和登陆等几个方面,并简单讨论了目前该领域存在的科学问题和未来可能的研究方向。  相似文献   
15.
江淮夏季降水季节内振荡和海气背景场的关系   总被引:6,自引:1,他引:5  
尹志聪  王亚非 《大气科学》2011,35(3):495-505
本文利用1954~2005年中国740站逐日降水资料和NCEP/NCAR再分析资料,分析江淮夏季降水季节内振荡(ISO)的年际变化,并讨论了异常年的海气背景特征.诊断分析的结果表明:(1)当江淮夏季降水ISO活跃时,江淮流域、孟加拉湾、南海及其以东海域和日本南部海区上空大气都表现出显著的季节内振荡特征.在江淮夏季降水不...  相似文献   
16.
北京城市内涝积水的数值模拟   总被引:6,自引:4,他引:2  
尹志聪  郭文利  李乃杰  解以扬 《气象》2015,41(9):1111-1118
北京城市内涝数值模型(BUW)根据北京复杂地形和大城市特点,将各类空间信息剖分为6458个网格及相应的通道,围绕城市地表、河道沟渠、排水管网等城市主要水文水动力学物理过程,模拟积水深度变化情况。以精细化的降水监测为驱动条件,BUW可以较好地模拟出“7·21”城市内涝积水的空间分布,对重点桥区的积水深度,积水过程的模拟也比较贴近实际,具有良好的模拟性能。360 min历时的2年重现期降雨情景下,北京四环内就会产生一定的积水,以孤立的积水点为主。10和50年重现期下,积水的深度和范围都有所增加,且开始呈片状。100年重现期,整个五环内都出现严重的城市积水,南部出现大片超过50 cm的积水区域,部分地区积水超过80 cm。面对“7·21”级别的降水,排水管网直径拓宽20%并不能明显改善城市排水能力。拓宽60%时,四环到五环之间的积水明显减弱,四环以内的大部分积水减弱。拓宽100%时,仅在二环到四环之间还有一些较浅的积水,拓宽140%时,六环内大部分积水消失。  相似文献   
17.
全球变暖背景下,极端天气气候事件频发,并表现出群发性、持续性、复合性等特点,不可预测性增加;持续性强降水、极端低温、复合型极端高温干旱、群发性热浪和台风等极端天气气候事件对我国经济社会和可持续发展影响巨大。然而,上述极端天气气候事件的新特征、关键过程和机理尚不完全清楚,重大极端事件的预报预测水平亟待提升。文章首先简要介绍“地球系统与全球变化”重点专项项目“中国极端天气气候事件的形成机理及其预测和归因”的基本情况。项目拟在分析全球变化背景下对我国造成重大影响的极端天气气候事件新特征的基础上,深入研究多尺度海-陆-气耦合过程影响极端天气气候事件的机理,挖掘极端天气气候事件次季节-季节预测的前兆信号;发展动力与物理统计相结合的极端事件预测新方法,研制针对中国极端事件的新一代高分辨率数值预报与检测归因系统。文章重点总结了自2022年12月项目立项至今取得的最新研究成果和进展。  相似文献   
18.
近些年,中国东部经历了严重的霾污染,对人体健康、交通安全、生态系统以及社会经济有巨大的危害。在1周以内的霾污染预报之外,季节尺度的霾污染预测可以给减排治污措施的制定提供更长时间尺度的科学支撑。本文以年际增量为预测对象,选取前期外强迫因子为自变量,分别针对京津冀和长三角区域建立逐月的冬季霾日数季节尺度预测模型,并开展了实时的季节预测。总体来看,京津冀和长三角区域预测模型的性能大体处于相似的水平,均方根误差在2 d左右,对距平符号的捕捉率在80%以上,对霾日数变化的长期趋势具有很好的再现能力。在2016/2017年冬季京津冀霾日数实时预测中,模型预测的结果相对于常年值的定性结论全部准确,相对于前一年污染状况的结论大多数准确。在2017/2018年冬季长三角霾日数实时预测中,12月和1月的预测误差较小,2月的预测误差在2 d左右。  相似文献   
19.
基于2013年1月9-15日北京地区一次持续雾、霾过程,对环流形势、要素、物理量场以及污染监测情况进行分析。结果表明:高PM2.5和SO2事件持续时间超过100 h,浓度达到严重污染级别。高空为偏西或西南气流且850 hPa有弱暖平流输送和地面倒槽维持少动是有利于雾、霾持续的背景条件。持续轻雾或霾对湿层厚度要求不高,在925 hPa下即可,且湿层越厚,能见度越低。逆温维持是雾、霾持续的主要原因,且轻雾或霾为主时逆温层特点为厚度浅强度弱,高度或强度的突然增大可预示向大雾或雪转换; 850 hPa以下涡度平流较弱是轻雾或霾持续的动力结构;总温度平流垂直分布表现为闭合中心强度在500 hPa明显分界,且相对较弱的平流中心的高度一般在850-1000 hPa之间,当高度达到500 hPa时或可预示雾、霾天气消散。  相似文献   
20.
为了研究气象条件与对烟花爆竹燃放的影响,针对政府应急安全管理和空气污染应对等工作开展相关服务,综合考虑了影响烟花爆竹燃放安全、燃放后污染物的扩散和清除,以及空气质量状况3方面的气象条件,采用隶属度乘积和函数最大值方法研发了烟花爆竹燃放气象指数。烟花爆竹燃放指数由低到高分4级,分别表示适宜、不太适宜、不适宜和极不适宜。燃放指数的发布对政府应急决策和公众理性燃放引导具有重要意义,文章介绍了燃放指数的分级和计算方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号