首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   39篇
  国内免费   70篇
测绘学   2篇
大气科学   149篇
地球物理   3篇
地质学   8篇
海洋学   1篇
综合类   2篇
自然地理   2篇
  2024年   1篇
  2023年   4篇
  2021年   3篇
  2020年   9篇
  2019年   7篇
  2018年   10篇
  2017年   7篇
  2016年   5篇
  2015年   8篇
  2014年   6篇
  2013年   11篇
  2012年   10篇
  2011年   11篇
  2010年   7篇
  2009年   5篇
  2008年   9篇
  2007年   12篇
  2006年   6篇
  2005年   12篇
  2004年   8篇
  2003年   6篇
  2002年   3篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1995年   2篇
  1992年   1篇
排序方式: 共有167条查询结果,搜索用时 640 毫秒
11.
陈涛  张芳华  符娇兰  于超 《气象》2020,46(4):449-461
2014年5月8日上午至9日白天,广东中南部珠江口地区连续受MCS A1、MCS A2两个长生命史中尺度对流系统影响,形成长时间强降水。其中5月8日午后华南内陆地区MCS A1逐步增强,从广西东部向广东珠江口方向移动,陆上活动时间超过11 h; MCS A2从9日凌晨至上午持续影响珠江口沿海地区,维持时间超过9 h,导致珠江口沿海地区出现400 mm 以上单站降水量。过程发生前,8日早上华南南部地区具有弱地面温度梯度,中午MCS A1对流触发与广西南部地面南风增强、华南南部云开大山—云雾山中尺度地形抬升有紧密关系;在弱斜压环境条件下,MCS A1从层云伴随线状对流结构演变为中尺度涡旋组织结构。8日夜间MCS S1入海后,与陆上遗留冷池相关的地面温度边界稳定在珠江口西侧沿海地区;9日凌晨西南低空急流增强后,MCS A2在珠江口沿海残留冷池边界附近开始发展,在向上游迎风方向传播的过程中,逐步形成多条平行β中尺度线状对流组织结构,对流系统整体移动缓慢,造成珠江口沿海地区出现较高的总降水量。计算表明MCS A2冷池边界扩张速度与低层垂直切变相对平衡,有利于形成较为直立的对流单体,增强的边界层水汽输送、更高的对流单体高度有利于产生较高的降水强度。通过总结这两个华南地区长生命史MCS发生发展过程,表明通过分析对流反馈造成的边界层/近地面层热动力特征变化,对于分析MCS发展特征、提高华南前汛期中尺度暴雨预报能力具有重要意义。  相似文献   
12.
利用多普勒雷达、气象卫星、自动气象站等监测数据以及NCEP再分析资料,对桂林2019年6月6-12日接连3次强降水天气过程的环流背景、影响系统与形成原因进行了对比分析。结果表明:(1)3次过程按影响系统分属暖区暴雨、低涡暴雨和锋面暴雨过程,均发生在高空急流右侧辐散、低空急流左侧辐合叠加区。(2)3次过程均受500 hPa短波槽和地面中尺度辐合线影响,但第1次过程中西南急流及地形等、第2次过程中低涡切变线、第3次过程中冷锋也起到重要作用。(3)3次过程的触发系统不同,第1次暖区暴雨过程迎风坡地形对其起触发作用,西南急流使得后向传播的对流云带维持;第2次低涡暴雨过程的触发系统为低层位于贵州一带的西南涡,西部冷空气侵入与西南急流加强是低涡对流云团维持较长时间的原因;第3次锋面暴雨的触发系统为冷锋,锋面配合锋前暖湿气流使对流云带加强。(4)第1次过程暖区暴雨MCS模态主要为线状后向扩建类,极端强降水出现在线对流中后端;第2次过程低涡暴雨MCS模态为涡旋类,极端强降水出现在涡旋中心附近;第3次过程锋面暴雨MCS模态由前期后部层云区线状对流转为层状云包裹对流系统,强降水发生在线对流弯曲或中心强回波处。  相似文献   
13.
A heavy rainfall event caused by a mesoscale convective system (MCS), which occurred over the Yellow River midstream area during 7–9 July 2016, was analyzed using observational, high-resolution satellite, NCEP/NCAR reanalysis, and numerical simulation data. This heavy rainfall event was caused by one mesoscale convective complex (MCC) and five MCSs successively. The MCC rainstorm occurred when southwesterly winds strengthened into a jet. The MCS rainstorms occurred when low-level wind fields weakened, but their easterly components in the lower and boundary layers increased continuously. Numerical analysis revealed that there were obvious differences between the MCC and MCS rainstorms, including their three-dimensional airflow structure, disturbances in wind fields and vapor distributions, and characteristics of energy conversion and propagation. Formation of the MCC was related to southerly conveyed water vapor and energy to the north, with obvious water vapor exchange between the free atmosphere and the boundary layer. Continuous regeneration and development of the MCSs mainly relied on maintenance of an upward extension of a positive water vapor disturbance. The MCC rainstorm was triggered by large range of convergent ascending motion caused by a southerly jet, and easterly disturbance within the boundary layer. While a southerly fluctuation and easterly disturbance in the boundary layer were important triggers of the MCS rainstorms. Maintenance and development of the MCC and MCSs were linked to secondary circulation, resulting from convergence of Ekman non-equilibrium flow in the boundary layer. Both intensity and motion of the convergence centers in MCC and MCS cases were different. Clearly, sub-synoptic scale systems in the middle troposphere played a leading role in determining precipitation distribution during this event. Although mesoscale systems triggered by the sub-synoptic scale system induced the heavy rainfall, small-scale disturbances within the boundary layer determined its intensity and location.  相似文献   
14.
冷涡背景下MCS的统计分析   总被引:3,自引:2,他引:1  
王磊  谌芸  张仙  曾波 《气象》2013,39(11):1385-1392
文章首先给出冷涡的定义,根据冷涡的定义识别出冷涡,2005—2011年4—9月7年共识别出60个冷涡,主要形成在蒙古和我国的东北地区。然后根据中尺度对流系统(MCS)的标准按尺度大小将MCS分类为α中尺度对流系统(MαCS)和β中尺度对流系统(MβCS),又按MCS的形状将MαCS分类为中尺度对流复合体(MCC)和持续拉长状对流系统(PECS),MβCS分类为β中尺度对流复合体(MβCC)和β中尺度持续拉长状对流系统(MβECS)。利用FY 2C(2005—2009年)和FY 2E(2010—2011年)的TBB资料对60个冷涡背景下的MCS进行识别并对其时空分布特征及其与冷涡的关系进行统计分析。结果表明:(1) 60个冷涡过程识别出61个MCS,MCS通常产生在我国东北和华北,MCC和PECS生成较分散;MβCC主要集中在华北和东北地区;MβECS主要集中在东北地区。(2) 6月生成的MCS最多,有16个,9月最少。MCS大多形成于当地的下午和晚上,此时对流发展旺盛,有利于中尺度对流系统的产生,到了夜间MCS发展成熟,至凌晨—日出时分消散。(3) 冷涡背景下的MCS的移动路径多数是从西向东偏北的,其生成后主要向东移动,这和我国中纬度西风带天气系统的移动路径基本一致,但由于受冷涡等天气系统的影响,会出现不同的移动方向。位于冷涡东侧且距离冷涡中心距离较近的MCS有向东偏北方向移动的趋势;位于冷涡南侧且距离中心较远的MCS有向东偏南方向移动的趋势。(4) 冷涡背景下的MCS主要产生在冷涡的发展阶段,成熟和消散阶段相对较少。(5) 冷涡背景下的MCS主要形成在冷涡的东南部,西南部也有一小部分。(6) MβCS系统发展较MαCS系统快,持续的时间也较MαCS短。  相似文献   
15.
持续拉伸型中尺度对流系统发生发展与江苏暴雨分析   总被引:3,自引:3,他引:0  
利用自动气象站、卫星探测资料,NCEP/NCAR 1°×1°再分析资料等,从环流特征,动力、热力和水汽条件等对发生在江苏地区的两次梅汛期大暴雨过程的中尺度对流云团的发生、发展进行了分析。结果表明:这两次中尺度对流云团中均存在持续伸长型的中尺度对流系统(PECS),大暴雨区与TBB<-70 ℃区域有较好的对应关系,有利的环境场形成的高空辐散、低空辐合和强烈的上升运动是PECS发生发展的重要条件。PECS云团处于200 hPa高空急流入口区右侧、西南低空急流左侧(切变线南侧),呈西南—东北向线状排列,低层暖湿不稳定气流诱发中尺度云团的产生,气旋性涡度场对积云对流活动具有组织和增强作用。当正涡度向垂直方向发展时,附近产生强烈的垂直上升运动,对应着中尺度PECS云团的强烈发展。强烈的对流不稳定有利于中尺度对流系统的发展,也有利于触发暴雨产生。  相似文献   
16.
孙军  谌芸  杨舒楠  代刊  陈涛  姚蓉  徐珺 《气象》2012,38(10):1267-1277
本文是“北京7.21特大暴雨极端性分析及思考”的第二部分,第一部分“观测分析及思考”对此次过程的降水特点、水汽特点、中尺度对流系统(MCS)的环境场条件和发生发展过程进行了分析,指出这是一次极端降水过程。本文进一步从影响降水的因子:降水效率、水汽、上升运动、持续时间等方面进一步探讨极端性降水的成因,所用资料为业务中常用的模式分析和各种观测资料。分析表明,本次过程为典型华北暴雨环流形势,其中高层气流辐散区与低层低涡切变线的耦合是直接诱因;较高的环境相对湿度和湿层较厚,较低的抬升凝结高度和自由对流高度以及热带降水性质提高了本次过程的降水效率;异常大的水汽含量(可降水量达60-80mm)及与其相关的物理量异常,可作为判断极端降水的重要因子;环境大气具有中下层条件性不稳定,上层湿中性层结特性,CAPE值中等,同时上层干侵入增加了对流不稳定,有利于上升运动发展;低涡切变线及华北地形共同触发了MCS的在暖区生成发展;低涡北跳、MCS后向传播特性使暖区MCS东移速度慢,形成“列车效应”,造成降雨持续时间长。本文最后探讨了极端降水的预报思路。  相似文献   
17.
山东一次区域性暴雨中尺度特征分析   总被引:6,自引:0,他引:6  
杨学斌  谌芸  代玉田 《气象科技》2012,40(4):627-634
利用常规资料、地面自动站资料、FY2C卫星云图TBB和多普勒天气雷达资料,对2009年5月9—10日发生在山东的春季区域性暴雨进行分析和研究。结果表明:①强降水是在低层冷空气和深厚西南暖湿气流交汇的过程中产生的,副高异常偏强,制约850~700hPa切变线和地面辐合线停滞少动,产生较长时间的降水。②地面辐合线的形成和维持激发了边界层的辐合上升运动,为暴雨区提供了充足的水汽,冷空气从边界层楔入,与暖湿气流汇合并抬升暖湿气流辐合上升,使上升运动加强,降水增幅。③中尺度对流系统是造成暴雨的主要中尺度系统,多个单体更迭并移经同一区域,形成"列车效应"而产生区域性暴雨。④雷达径向速度图中逆风区和不同高度(超)低空急流的大小对短时强降水预报有一定的指示意义。  相似文献   
18.
During 8-9 July 2007,several successively developed rainstorms along the Meiyu front produced heavy rainfall in the Huaihe River Valley,which led to the most catastrophic flooding in this region since 1954.Through mesoscale analysis of both conventional and intensive observations from upper air and surface stations,automatic weather stations,Doppler radars,and the FY-2C satellite,the current study examines the developing style and environmental conditions of the mesoscale convective systems(MCSs)that led to the development of the rainstorms.Our analysis showed that this event went through three phases.The first phase of the heavy rainfall(Phase Ⅰ)was caused by a meso-α-scale wind shear in the lower troposphere during 0200-1700 BT(Beijing Time)8 July.Phase Ⅱ was characterized by a reduction in rain rate and the formation of a low-level vortex between 1700 BT 8 and 0200 BT 9 July.In Phase Ⅲ,the well-organized mature meso-α-scale low-level vortex brought about intensified rains during 0200-0800 BT 9 July.Satellite and raclar observations showed a backward development of MCSs(new convective cells were generated at the back of the system)in PhaseⅡ,a forward development in Phase Ⅲ,and a spiral organization of the convective lines in Phase Ⅱ.The heavy rainstorm systems were initiated continuously along a surface mesoscale dew-point front with a horizontal scale of~300 km(as part of the Meiyu front)in the upper reaches of the Huaihe River Valley near Fuyang City,Anhui Province and then gradually decayed in the middle and lower reaches.It is hypothesized that lifting by strong low-level convergence is sufficient to trigger convection in the high CAPE(convective available potential energy)environment.  相似文献   
19.
A strong cyclonic wind perturbation generated in the northern South China Sea (SCS) moved northward quickly and developed into a mesoscale vortex in southwest Guangdong Province, and then merged with a southward-moving shear line from mid latitudes in the period of 21-22 May 2006, during which three strong mesoscale convective systems (MCSs) formed and brought about torrential rain or even cloudburst in South China. With the 1° ×1° NCEP (National Centers for Environment Prediction) reanalysis data and the Weather and Research Forecast (WRF) mesoscale model, a numerical simulation, a potential vorticity inversion analysis, and some sensitivity experiments are carried out to reveal the formation mechanism of this rainfall event. In the meantime, conventional observations, satellite images, and the WRF model outputs are also utilized to perform a preliminary dynamic and thermodynamic diagnostic analysis of the rainstorm systems. It is found that the torrential rain occurred in favorable synoptic conditions such as warm and moist environment, low lifting condensation level, and high convective instability. The moisture transport by strong southerly winds associated with the rapid northward advance of the cyclonic wind perturbation over the northern SCS provided the warm and moist condition for the formation of the excessive rain. Under the dynamic steering of a southwesterly flow ahead of a north trough and that on the southwest side of the West Pacific subtropical high, the mesoscale vortex (or the cyclonic wind perturbation), after its genesis, moved northward and brought about enormous rain in most parts of Guangdong Province through providing certain lifting forcing for the triggering of mesoscale convection. During the development of the mesoscale vortex, heavy rainfall was to a certain extent enhanced by the mesoscale topography of the Yunwu Mountain in Guangdong. The effect of the Yunwu Mountain is found to vary under different prevailing wind directions and intensities. The location o  相似文献   
20.
鄂东一次下击暴流天气的中尺度分析   总被引:3,自引:2,他引:1  
张家国  王平  吴涛 《气象科学》2010,30(2):239-244
利用自动气象站观测网资料,计算了逐分钟地面散度场,并将散度场等与多普勒天气雷达资料叠加形成综合分析场,对2007年7月27日鄂东地区雷雨大风天气过程进行了中尺度分析。结果表明:地形辐合线对中尺度对流系统(MCS)触发和加强起到重要作用。MCS发生发展期间,多普勒天气雷达上相继有两个弓状回波形成。第一个弓状回波在速度图上因弓状回波移动方向与雷达波束有较大夹角后部入流急流特征不明显,但强度图上有弱回波通道特征;第二个弓状回波沿雷达径向移动,后部入流急流特征明显。武汉地区灾害性雷雨大风是一个强盛的多单体风暴所产生的系列下击暴流造成的,它位于第二弓状回波向前突出的位置。系列下击暴流发生期间,地面附近强辐散峰值与多单体风暴强回波高度显著下降的时间和位置基本一致。除弓状回波特征、后部入流急流、中层速度辐合及回波重心高度下降等特征外,弱回波通道、风暴相对速度图上沿雷达波束方向的正负速度对等也是下击暴流发生的典型特征。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号