首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2395篇
  免费   597篇
  国内免费   1044篇
测绘学   50篇
大气科学   1042篇
地球物理   1151篇
地质学   1124篇
海洋学   383篇
天文学   9篇
综合类   78篇
自然地理   199篇
  2024年   20篇
  2023年   63篇
  2022年   107篇
  2021年   124篇
  2020年   139篇
  2019年   177篇
  2018年   179篇
  2017年   117篇
  2016年   149篇
  2015年   159篇
  2014年   209篇
  2013年   212篇
  2012年   193篇
  2011年   174篇
  2010年   181篇
  2009年   211篇
  2008年   176篇
  2007年   199篇
  2006年   169篇
  2005年   144篇
  2004年   118篇
  2003年   146篇
  2002年   109篇
  2001年   80篇
  2000年   84篇
  1999年   61篇
  1998年   59篇
  1997年   60篇
  1996年   58篇
  1995年   44篇
  1994年   32篇
  1993年   23篇
  1992年   15篇
  1991年   17篇
  1990年   10篇
  1989年   8篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1978年   1篇
  1954年   1篇
排序方式: 共有4036条查询结果,搜索用时 15 毫秒
101.
The present work proposes an approach to adapt existing isotropic models to transversely isotropic materials. The main idea is to introduce equivalence relations between the real material and a fictitious isotropic one on which one can take all the advantages of the well‐established isotropic theory. Two applications of this approach are presented here: a failure criterion and a damage model that takes into account the load‐induced anisotropy. In both cases, theoretical predictions are in agreement with the experimental data. In the present paper, the developed approach is applied to sedimentary rock materials; nevertheless, it can be generalized to any material that exhibits transverse isotropy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
102.
We propose a numerical method that couples a cohesive zone model (CZM) and a finite element‐based continuum damage mechanics (CDM) model. The CZM represents a mode II macro‐fracture, and CDM finite elements (FE) represent the damage zone of the CZM. The coupled CZM/CDM model can capture the flow of energy that takes place between the bulk material that forms the matrix and the macroscopic fracture surfaces. The CDM model, which does not account for micro‐crack interaction, is calibrated against triaxial compression tests performed on Bakken shale, so as to reproduce the stress/strain curve before the failure peak. Based on a comparison with Kachanov's micro‐mechanical model, we confirm that the critical micro‐crack density value equal to 0.3 reflects the point at which crack interaction cannot be neglected. The CZM is assigned a pure mode II cohesive law that accounts for the dependence of the shear strength and energy release rate on confining pressure. The cohesive shear strength of the CZM is calibrated by calculating the shear stress necessary to reach a CDM damage of 0.3 during a direct shear test. We find that the shear cohesive strength of the CZM depends linearly on the confining pressure. Triaxial compression tests are simulated, in which the shale sample is modeled as an FE CDM continuum that contains a predefined thin cohesive zone representing the idealized shear fracture plane. The shear energy release rate of the CZM is fitted in order to match to the post‐peak stress/strain curves obtained during experimental tests performed on Bakken shale. We find that the energy release rate depends linearly on the shear cohesive strength. We then use the calibrated shale rheology to simulate the propagation of a meter‐scale mode II fracture. Under low confining pressure, the macroscopic crack (CZM) and its damaged zone (CDM) propagate simultaneously (i.e., during the same loading increments). Under high confining pressure, the fracture propagates in slip‐friction, that is, the debonding of the cohesive zone alternates with the propagation of continuum damage. The computational method is applicable to a range of geological injection problems including hydraulic fracturing and fluid storage and should be further enhanced by the addition of mode I and mixed mode (I+II+III) propagation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
103.
This paper studies the chemo‐mechanics of cemented granular solids in the context of continuum thermodynamics for fluid‐saturated porous media. For this purpose, an existing constitutive model formulated in the frame of the Breakage Mechanics theory is augmented to cope with reactive processes. Chemical state variables accounting for the reactions between the solid constituents and the solutes in the pore fluid are introduced to enrich the interactions among the microstructural units simulated by the model (i.e., grains and cement bonds). Two different reactive processes are studied (i.e., grain dissolution and cement precipitation), using the chemical variables to describe the progression of the reactions and track changes in the size of grains and bonds. Finally, a homogenization strategy is used to derive the energy potentials of the solid mixture, adopting probability density functions that depend on both mechanical and chemical indices. It is shown that the connection between the statistics of the micro‐scale attributes and the continuum properties of the solid enables the mathematical capture of numerous mechanical effects of lithification and chemical deterioration, such as changes in stiffness, expansion/contraction of the elastic domain, and development of inelastic strains during reaction. In particular, the model offers an interpretation of the plastic strains generated by aggressive environments, which are here interpreted as an outcome of chemically driven debonding and comminution. As a result, the model explains widely observed macroscopic signatures of geomaterial degradation by reconciling the energetics of the deformation/reaction processes with the evolving geometry of the microstructural attributes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
104.
This work describes a constitutive framework for modeling the behavior of rough joints under cyclic loading. Particular attention is paid to the intrinsic links between dilatancy, surface degradation, and mobilized shear strength. The framework also accounts for the important effect of shear‐induced anisotropy. The resulting approach is fully three‐dimensional and is not restricted to plane‐displacement kinematics. Both the governing formulation and an algorithm for implicit numerical integration are presented. While the proposed methods are general, we also postulate a specific model that is compared with experimental data. It employs relatively few free parameters but shows good agreement with laboratory tests. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
105.
106.
Evapotranspiration (ET) is an important expenditure in water and energy balances, especially on cold and high‐altitude land surfaces. Daily ET of the upper reach of the Shule River Basin was estimated using Landsat 5 TM data and the Surface Energy Balance Algorithm for Land (SEBAL) model. Based on observations made at the Suli station, the algorithms of land surface temperature and soil heat flux in SEBAL were modified. Land surface temperature was retrieved and compared with ground truth via three methods: the radiative transfer equation method, the mono‐window algorithm, and the single‐channel method. We selected the best of these methods, mono‐window algorithm, for estimating ET. The average error of daily ET estimated by the modified SEBAL model and measured by the eddy covariance system was 16.4%, with a root‐mean‐square error of 0.52 mm d?1. The estimated ET means were 3.09, 2.48, and 1.48 mm d?1 on June 9 (DOY 160), June 25 (DOY 176), and July 27 (DOY 208) of the year 2010, respectively. The average estimated ET on the glacier surface of all days was more than 3 mm d?1, a measurement that is difficult to capture in‐situ and has rarely been reported. This study will improve the understanding of water balance in cold, high‐altitude regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
107.
Urban floods pose a societal and economical risk. This study evaluated the risk and hydro-meteorological conditions that cause pluvial flooding in coastal cities in a cold climate. Twenty years of insurance claims data and up to 97 years of meteorological data were analysed for Reykjavík, Iceland (64.15°N; <100 m above sea level). One third of the city's wastewater collection system is combined, and pipe grades vary from 0.5% to 10%. Results highlight semi-intensive rain (<7 mm/h; ≤3 year return period) in conjunction with snow and frozen ground as the main cause for urban flood risk in a climate which undergoes frequent snow and frost cycles (avg. 13 and 19 per season, respectively). Floods in winter were more common, more severe and affected a greater number of neighbourhoods than during summer. High runoff volumes together with debris remobilized with high winds challenged the capacity of wastewater systems regardless of their age or type (combined vs. separate). The two key determinants for the number of insurance claims were antecedent frost depth and total precipitation volume per event. Two pluvial regimes were particularly problematic: long duration (13–25 h), late peaking rain on snow (RoS), where snowmelt enhanced the runoff intensity, elongated and connected independent rainfall into a singular, more voluminous (20–76 mm) event; shorter duration (7–9 h), more intensive precipitation that evolved from snow to rain. Closely timed RoS and cooling were believed to trigger frost formation. A positive trend was detected in the average seasonal snow depth and volume of rain and snowmelt during RoS events. More emphasis, therefore, needs to be placed on designing and operating urban drainage infrastructure with regard to RoS co-acting with frozen ground. Furthermore, more detailed, routine monitoring of snow and soil conditions is important to predict RoS flood events.  相似文献   
108.
There are thousands of seeps in the deep ocean worldwide; however, many questions remain about their contributions to global biodiversity and the surrounding deep‐sea environment. In addition to being globally distributed, seeps provide several benefits to humans such as unique habitats, organisms with novel genes, and carbon regulation. The purpose of this study is to determine whether there are unique seep macrobenthic assemblages, by comparing seep and nonseep environments, different seep habitats, and seeps at different depths and locations. Infaunal community composition, diversity, and abundance were examined between seep and nonseep background environments and among three seep habitats (i.e., microbial mats, tubeworms, and soft‐bottom seeps). Abundances were higher at seep sites compared to background areas. Abundance and diversity also differed among microbial mat, tubeworm, and soft‐bottom seep habitats. Although seeps contained different macrobenthic assemblages than nonseep areas, infaunal communities were also generally unique for each seep. Variability was 75% greater within communities near seeps compared to communities in background areas. Thus, high variability in community structure characterized seep communities rather than specific taxa. The lack of similarity among seep sites supports the idea that there are no specific infauna that can be used as indicators of seepage throughout the northern Gulf of Mexico, at least at higher taxonomic levels.  相似文献   
109.
滨海电厂温排水停止排放以及季节更替、寒潮来袭等现象会引起海水温度降低,从而对鱼类等变温生物产生冷冲击效应。本研究通过模拟水温骤降情形,以孵化率、死亡率、畸形率等为指标,探讨了温度骤降对大黄鱼早期发育阶段(鱼卵和仔鱼)的冷冲击作用。研究发现,大黄鱼仔鱼(3日龄)对温度骤降的敏感性略高于鱼卵。在大黄鱼鱼卵和仔鱼的适温范围内,当水温由22 ℃骤降至19 ℃或16 ℃时,鱼卵的孵化率和死亡率无明显变化,而胚胎发育和仔鱼的生长发育均减缓,仔鱼的死亡率提高;水温超出适温范围,由22 ℃骤降至13 ℃或10 ℃时,对鱼卵和仔鱼造成致命的冷冲击伤害,48 h累积死亡率分别为84.6%~100%和72.1%~98.2%。由此推测:当水温骤降超出适温范围后,大黄鱼的早期发育阶段遭受致命的冷冲击伤害,从而影响种群补充和年龄结构。  相似文献   
110.
Floating wind turbine has been the highlight in offshore wind industry lately. There has been great effort on developing highly sophisticated numerical model to better understand its hydrodynamic behaviour. A engineering-practical method to study the nonlinear wave effects on floating wind turbine has been recently developed. Based on the method established, the focus of this paper is to quantify the wave nonlinearity effect due to nonlinear wave kinematics by comparing the structural responses of floating wind turbine when exposed to irregular linear Airy wave and fully nonlinear wave. Critical responses and fatigue damage are studied in operational conditions and short-term extreme values are predicted in extreme conditions respectively. In the operational condition, wind effects are dominating the mean value and standard deviation of most responses except floater heave motion. The fatigue damage at the tower base is dominated by wind effects. The fatigue damage for the mooring line is more influenced by wind effects for conditions with small wave and wave effects for conditions with large wave. The wave nonlinearity effect becomes significant for surge and mooring line tension for large waves while floater heave, pitch motion, tower base bending moment and pontoon axial force are less sensitive to the nonlinear wave effect. In the extreme condition, linear wave theory underestimates wave elevation, floater surge motion and mooring line tension compared with fully nonlinear wave theory while quite close results are predicted for other responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号