首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   2篇
  国内免费   2篇
地球物理   4篇
地质学   7篇
海洋学   3篇
综合类   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2011年   2篇
  2009年   2篇
  2008年   3篇
  2006年   2篇
  2004年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
11.
根据现代企业制度的基本概念,对当前地勘单位管理体制及普遍存在问题进行分析,提出了在地勘单位建立现代企业制度的途径应注重:理顺体制、事企分工;明确产权关系、实现投资多元化;建立激励约束机制;培植核心竞争力等。在建立和完善企业制度中鼓励职工股权参与和管理参与。  相似文献   
12.
Local areas of fine-grained organic-rich sediments in Eckernforde and Kieler Forde Bays may experience disturbances which cause fluidization of the substrate and create a dense suspension (fluid mud) which exists temporarily as a component of the benthic boundary layer before becoming incorporated into the permanent bottom. Laboratory studies indicate this material behaves rheologically as a non-Newtonian substance, and both shear thinning (pseudoplastic) and shear thickening (dilatant) flow behavior can occur (ofien within the same sample) under low to intermediate shear stresses (2 - 40 Pa) and shear rates (0.46 - 122.49 s^-1). Detailed granulometric analyses (1/4 phi intervals) of the fraction 〈63 μm show differences in the silt/clay ratio (clay 〈2 μm) between the two environments. Little change in the silt/clay ratio is seen in the Kieler Forde sediments (from 0.74 to 0.95); however, at Eckernforde, the ratio changed from 0.73 to 2.19. Fine silt particles are lacking or were removed from the 4 to 16 μm fraction of the Eckernforde but not from the Kieler Forde sediments. Both shear thickening and shear thinning flow was observed in the Eckernforde sediments. Shear thickening flow behavior was not observed in the Kieler Forde sediments. Samples of organic-rich (10 to 20%) interface sediments from both areas were analyzed rheologically prior to, and atier removal of organic matter by H2O2 treatment. Reduction in ‘apparent' viscosity occurred through the entire range of shear rates and stresses, shear thickening behavior was reduced or became nonexistent, and yield stress decreased significantly compared to the natural samples. The differences in yield stress and flow behavior of dense suspensions result primarily from differences in grain size distributions but the role of organic matter on those properties is very significant and adds to the effects of the grain size distribution of the sediment.  相似文献   
13.
Numerical experiments are conducted to examine the effects of gravity on monodisperse and polydisperse colloid transport in water-saturated fractures with uniform aperture. Dense colloids travel in water-saturated fractures by advection and diffusion while subject to the influence of gravity. Colloids are assumed to neither attach onto the fracture walls nor penetrate the rock matrix based on the assumptions that they are inert and their size is larger than the pore size of the surrounding solid matrix. Both the size distribution of a colloid plume and colloid density are shown to be significant factors impacting their transport when gravitational forces are important. A constant-spatial-step particle-tracking code simulates colloid plumes with increasing densities transporting in water-saturated fractures while accounting for three forces acting on each particle: a deterministic advective force due to the Poiseuille flow field within the fracture, a random force caused by Brownian diffusion, and the gravitational force. Integer angles of fracture orientation with respect to the horizontal ranging from ±90° are considered: three lognormally distributed colloid plumes with mean particle size of 1 μm (averaged on a volumetric basis) and standard deviation of 0.6, 1.2 and 1.8 μm are examined. Colloid plumes are assigned densities of 1.25, 1.5, 1.75 and 2.0 g/cm3. The first four spatial moments and the first two temporal moments are estimated as functions of fracture orientation angle and colloid density. Several snapshots of colloid plumes in fractures of different orientations are presented. In all cases, larger particles tend to spread over wider sections of the fracture in the flow direction, but smaller particles can travel faster or slower than larger particles depending on fracture orientation angle.  相似文献   
14.
Most aqueous sedimentary environments contain varying concentrations of fine‐grained, often clay‐rich, sediment that is transported in suspension and may modify the properties of the flow and underlying mobile bed. This paper presents results from a series of laboratory experiments examining the mean and turbulent properties of clay‐laden (kaolinite) flows, of various volumetric sediment concentrations between 0·046% and 12·7%, moving over a fixed, idealized current ripple. As the kaolinite concentration was raised, with flow velocity and depth constant, four flow types were observed to occur: (i) turbulent flow, in which flow separation is dominant in the leeside of the ripple; (ii) turbulence‐enhanced transitional flow, in which turbulence in the leeside separation zone region is enhanced; (iii) turbulence‐attenuated transitional flow, in which turbulence along the separation zone shear layer and in the free flow above it becomes damped, eventually leading to a reduction in the size of the separation zone wake region; and (iv) laminar plug flow, in which turbulence is damped and flow is almost stagnant in the lee of the ripple. Such modulation of turbulence by increasing clay concentrations suggests that many paradigms of flow and bedform dynamics, which have been based on extensive past work in clear water flows, require revision. The present results highlight a need to fully characterize the boundary conditions for turbulence modulation as a function of clay type and applied flow conditions, and the effects of such flows on fully mobile cohesionless beds.  相似文献   
15.
Flows with high suspended sediment concentrations are common in many sedimentary environments, and their flow properties may show a transitional behaviour between fully turbulent and quasi‐laminar plug flows. The characteristics of these transitional flows are known to be a function of both clay concentration and type, as well as the applied fluid stress, but so far the interaction of these transitional flows with a loose sediment bed has received little attention. Information on this type of interaction is essential for the recognition and prediction of sedimentary structures formed by cohesive transitional flows in, for example, fluvial, estuarine and deep‐marine deposits. This paper investigates the behaviour of rapidly decelerated to steady flows that contain a mixture of sand, silt and clay, and explores the effect of different clay (kaolin) concentrations on the dynamics of flow over a mobile bed, and the bedforms and stratification produced. Experiments were conducted in a recirculating slurry flume capable of transporting high clay concentrations. Ultrasonic Doppler velocity profiling was used to measure the flow velocity within these concentrated suspension flows. The development of current ripples under decelerated flows of differing kaolin concentration was documented and evolution of their height, wavelength and migration rate quantified. This work confirms past work over smooth, fixed beds which showed that, as clay concentration rises, a distinct sequence of flow types is generated: turbulent flow, turbulence‐enhanced transitional flow, lower transitional plug flow, upper transitional plug flow and a quasi‐laminar plug flow. Each of these flow types produces an initial flat bed upon rapid flow deceleration, followed by reworking of these deposits through the development of current ripples during the subsequent steady flow in turbulent flow, turbulence‐enhanced transitional flow and lower transitional plug flow. The initial flat beds are structureless, but have diagnostic textural properties, caused by differential settling of sand, silt and cohesive mud, which forms characteristic bipartite beds that initially consist of sand overlain by silt or clay. As clay concentration in the formative flow increases, ripples first increase in mean height and wavelength under turbulence‐enhanced transitional flow and lower transitional plug‐flow regimes, which is attributed to the additional turbulence generated under these flows that subsequently causes greater lee side erosion. As clay concentration increases further from a lower transitional plug flow, ripples cease to exist under the upper transitional plug flow and quasi‐laminar plug flow conditions investigated herein. This disappearance of ripples appears due to both turbulence suppression at higher clay concentrations, as well as the increasing shear strength of the bed sediment that becomes more difficult to erode as clay concentration increases. The stratification within the ripples formed after rapid deceleration of the transitional flows reflects the availability of sediment from the bipartite bed. The exact nature of the ripple cross‐stratification in these flows is a direct function of the duration of the formative flow and the texture of the initial flat bed, and ripples do not form in cohesive flows with a Reynolds number smaller than ca 12 000. Examples are given of how the unique properties of the current ripples and plane beds, developing below decelerated transitional flows, could aid in the interpretation of depositional processes in modern and ancient sediments. This interpretation includes a new model for hybrid beds that explains their formation in terms of a combination of vertical grain‐size segregation and longitudinal flow transformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号