首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   14篇
  国内免费   16篇
测绘学   3篇
大气科学   1篇
地球物理   30篇
地质学   15篇
海洋学   95篇
综合类   1篇
自然地理   5篇
  2022年   3篇
  2021年   1篇
  2020年   4篇
  2019年   6篇
  2018年   5篇
  2016年   8篇
  2015年   4篇
  2014年   7篇
  2013年   6篇
  2012年   6篇
  2011年   5篇
  2010年   7篇
  2009年   13篇
  2008年   17篇
  2007年   10篇
  2006年   8篇
  2005年   11篇
  2004年   12篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
排序方式: 共有150条查询结果,搜索用时 15 毫秒
91.
This study assesses hydrodynamic and morphodynamic model sensitivity and functionality in a curved channel. The sensitivity of a depth‐averaged model to user‐defined parameters (grain size, roughness, transverse bed slope effect, transport relations and secondary flow) is tested. According to the sensitivity analysis, grain size, transverse bed slope effect and sediment transport relations are critical to simulated meander bend morphodynamics. The parametrization of grain size has the most remarkable effect: field‐based grain size parametrization is necessary in a successful morphodynamic reconstruction of a meander bend. The roughness parametrization method affects the distribution of flow velocities and therefore also morphodynamics. The combined effect of various parameters needs further research. Two‐dimensional (2D) and three‐dimensional (3D) reconstructions of a natural meander bend during a flood event are assessed against field measurements of acoustic Doppler current profiler and multi‐temporal mobile laser scanning data. The depth‐averaged velocities are simulated satisfactorily (differences from acoustic Doppler current profiler velocities 5–14%) in both 2D and 3D simulations, but the advantage of the 3D hydrodynamic model is unquestionable because of its ability to model vertical and near‐bed flows. The measured and modelled near‐bed flow, however, differed notably from each other's, the reason of which was left open for future research. It was challenging to model flow direction beyond the apex. The 3D flow features, which also affected the distribution of the bed shear stress, seem not to have much effect on the predicted morphodynamics: the 2D and 3D morphodynamic reconstructions over the point bar resembled each other closely. Although common features between the modelled and measured morphological changes were also found, some specific changes that occurred were not evident in the simulation results. Our results show that short‐term, sub‐bend scale morphodynamic processes of a natural meander bend are challenging to model, which implies that they are affected by factors that have been neglected in the simulations. The modelling of short‐term morphodynamics in natural curved channel is a challenge that requires further study. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
92.
The distribution and circulation of water masses in the region between 6°W and 3°E and between the Antarctic continental shelf and 60°S are analyzed using hydrographic and shipboard acoustic Doppler current profiler (ADCP) data taken during austral summer 2005/2006 and austral winter 2006. In both seasons two gateways are apparent where Warm Deep Water (WDW) and other water masses enter the Weddell Gyre through the Lazarev Sea: (a) a probably topographically trapped westward, then southwestward circulation around the northwestern edge of Maud Rise with maximum velocities of about 20 cm s−1 and (b) the Antarctic Coastal Current (AntCC), which is confined to the Antarctic continental shelf slope and is associated with maximum velocities of about 25 cm s−1.Along two meridional sections that run close to the top of Maud Rise along 3°E, geostrophic velocity shears were calculated from CTD measurements and referenced to velocity profiles recorded by an ADCP in the upper 300 m. The mean accuracy of the absolute geostrophic velocity is estimated at ±2 cm s−1. The net baroclinic transport across the 3°E section amounts to 20 and 17 Sv westward for the summer and winter season, respectively. The majority of the baroclinic transport, which accounts for ∼60% of the total baroclinic transport during both surveys, occurs north of Maud Rise between 65° and 60°S.However, the comparison between geostrophic estimates and direct velocity measurements shows that the circulation within the study area has a strong barotropic component, so that calculations based on the dynamic method underestimate the transport considerably. Estimation of the net absolute volume transports across 3°E suggests a westward flow of 23.9±19.9 Sv in austral summer and 93.6±20.1 Sv in austral winter. Part of this large seasonal transport variation can be explained by differences in the gyre-scale forcing through wind stress curl.  相似文献   
93.
INTRODUCTIONSuspendedsedimenttransportplaysanimportantroleinthecoastalenvironmentevolution.Thus,theobservationofsuspendedsedimentsisofinteresttocoastalscientists,engineers,conservationistsandplanners,intheiractivitiesofharbourconstruction,landreclamatio…  相似文献   
94.
Hydrographic conditions in the Tsushima Strait revisited   总被引:1,自引:1,他引:0  
Long-term averaged temperature and salinity distributions in the Tsushima Strait are investigated on the basis of a concurrent dataset of the eastern and western channels during 1971–2000. Both temperature and salinity show a clear seasonal variation with weak and strong stratifications in December–April and June–October, respectively. The largest standard deviations occur in summer around the thermocline for temperature and in the surface layer for salinity. This indicates large interannual variability in the development of a thermocline and low salinity water advection from the East China Sea. The water masses in both channels are distinctly different from each other; the water in the western channel is generally colder and fresher than that in the eastern channel throughout the year. Baroclinic transport based on the density distributions shows a seasonal variation with a single peak in August for the eastern channel and double peaks in April and August for the western channel. However, this cannot explain the seasonal variation in the total volume transport estimated from the sea level differences across the channels. The spatial distribution of baroclinic transport shows a year-round negative transport towards the East China Sea behind the Iki Island in the eastern part of the eastern channel. This negative transport reflects the baroclinic structure between the offshore Tsushima Current Water and cold coastal water. The corresponding southwestward currents are found in both Acoustic Doppler Current Profiler (ADCP) and high frequency (HF) radars observations.  相似文献   
95.
夏季北黄海南部定点高分辨率实测海流分析   总被引:10,自引:2,他引:8       下载免费PDF全文
对夏季北黄海南部一定点高分辨率连续ADCP(Acoustic Doppler Current Profiler)海流实测资料,使用调和分析方法分解成3部分:不随时间变化的定常余流,周期性潮流和剩余流,再将潮流分解为正压潮流和斜压潮流。通过对实测海流中各组分的分析,结合同时期卫星反演海面风场资料,温度、盐度断面调查资料,得到以下结论:夏季该站点上层定常余流的主导动力控制因素是风应力,上层表现出明显的Ekman风海流特征,中、下层流速方向与表层流向基本成反向,体现出"上进下出"的垂向空间结构,定常流速最大位于近表层,可以达到5cm/s以上;各层的潮流类型均为正规半日潮流,主要半日潮潮流椭圆长轴的方向基本上呈东南-西北方向,其椭率在近底层达到最大值,中、上层较小;从能量角度分析该站点各海流组分,潮流与剩余流所占能量较大,平均起来看,潮流能量占测量海流能量的77%,而定常余流仅占0.6%,该点的斜压潮流较弱,平均斜压潮流能量仅占正压潮流能量的5%。  相似文献   
96.
97.
ADCP在长江口悬沙输运观测中的应用   总被引:12,自引:1,他引:11  
声学多普勒流速剖面仪 (ADCP)是近年来发展起来的一种用于测量流速的声学仪器 ,同时还可以通过建立回声强度和现场取得水样的回归关系式而获得悬沙浓度的数据。本文利用在长江口两个站位的高频观测数据 ,对现场取得的悬沙作粒度分析 ,在此基础上对枯季长江口地区悬沙输送机制和悬沙粒度对水动力的响应进行了分析和探讨。结果表明 :平均流输运在整个悬沙输送中占主导地位 ,同时潮扩散和垂向扩散作用也是引起两站悬沙输运的重要因子 ;不同层次和不同时刻的悬沙粒度参数的变化 ,既和海 陆转换有关 ,也和潮相变化密切相关。  相似文献   
98.
Relative ‘echo intensity’ data (dI) from a bottom-mounted four-beam 300 kHz acoustic Doppler current profiler (ADCP) are used to infer propagation of vigorous processes above a continental slope. The 3- to 60-m horizontal beam spread and the 2-Hz sampling allow the distinction of different arrival times t i , i = 1,..., 4, at different distances in the acoustic beams from sharp changes in dI-content associated with frontal non-linear and turbulent bores or ‘waves’. The changes in dI are partially due to variations in amounts of resuspended material carried by the near-bottom turbulence and partially due to the fast variations in density stratification (‘stratified turbulence’), as inferred from 1-Hz sampled thermistor string data above the ADCP. Such bores are observed to pass the mooring up to 80 m above the bottom, having typical propagation speeds c = 0.15–0.5 m s−1, as determined from dI(t i ). Particle speeds in the immediate environment of a bore amount to |u|env=c ± 0.05 m s−1, the equality being a necessary condition for kinematic instability, whilst the maximum particle speeds amount |u|max = 1.2–2c. The dI-determined directions of up-, down- and alongslope processes are all to within ±10° of the ADCP’s beam-spread averaged current (particle velocity) data.  相似文献   
99.
作者采用浊度计和声学多普勒流速剖面仪(ADCP)在近海区域连续、定点观测的应用中,利用浊度与悬沙浓度之间良好的线性关系,对潮汐半月周期内的浊度和ADCP后向散射声强数据进行相关性分析,讨论了小、中、大潮期间利用ADCP后向散射声强反演悬沙浓度的可靠性,反演过程中综合考虑了声学近场非球面扩散和本底噪声的影响。结果表明,在实验海域中,小潮情况下,各水层内悬浮泥沙成分较为稳定,ADCP后向散射声强与浊度变化相关性较高,达到0.91;而在大潮情况下,ADCP后向散射声强与浊度变化的相关性降低,悬沙浓度及成分容易在海流的影响下发生变化。  相似文献   
100.
High-resolution current velocity and suspended sediment concentration (SSC) data were collected by using an Acoustic Doppler Current Profiler (ADCP) at two anchor stations and a cross-section in the South Channel of the Changjiang River mouth during meso and neap tides on Nov. 16, 2003. In addition, tidal cycle (13-hour) observation at two stations was carried out with traditional methods during the spring tide. Results indicated that resuspension occurred not only at the flood and ebb maximum, but also in the early phase of ebb in the meso and neap tide. When tidal current transited from high to ebb phase, current speed accelerated. Subsequently, fine-grained sediment with low critical threshold was resuspended and increased concentration. The river mouth area remained in siltation in the meso and neap tidal phase during the observation season, with calculated resuspension flux in the order of magnitude of 10−4–10−7 kg·m−2/s. Suspended sediment transport in the South Channel was dominated by freshwater discharge, but the Storks drift, vertical circulation and vertical shear effect due to tidal oscillation also played an important role in resuspension and associated sediment transport. In contrast, resuspension sediment flux in the spring tide was larger than that in meso and neap tide, especially at the ebb maximum and flood maximum. The present study revealed that intensive resuspension corresponded well with the larger current velocity during winter. In addition, the ‘tidal pumping’ effect and tidal gravity circulation were also vital for forming the turbidity maximum in the Changjiang River estuary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号