首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5710篇
  免费   1278篇
  国内免费   3521篇
测绘学   67篇
大气科学   56篇
地球物理   1146篇
地质学   8182篇
海洋学   419篇
天文学   94篇
综合类   239篇
自然地理   306篇
  2024年   48篇
  2023年   142篇
  2022年   271篇
  2021年   361篇
  2020年   396篇
  2019年   500篇
  2018年   504篇
  2017年   487篇
  2016年   518篇
  2015年   531篇
  2014年   588篇
  2013年   607篇
  2012年   666篇
  2011年   434篇
  2010年   416篇
  2009年   403篇
  2008年   403篇
  2007年   404篇
  2006年   412篇
  2005年   310篇
  2004年   277篇
  2003年   273篇
  2002年   197篇
  2001年   176篇
  2000年   184篇
  1999年   161篇
  1998年   125篇
  1997年   146篇
  1996年   96篇
  1995年   86篇
  1994年   89篇
  1993年   55篇
  1992年   60篇
  1991年   32篇
  1990年   27篇
  1989年   33篇
  1988年   17篇
  1987年   25篇
  1986年   7篇
  1985年   13篇
  1984年   4篇
  1983年   6篇
  1982年   4篇
  1981年   5篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
11.
We have observed the eclipsing low-mass X-ray binary MS 1603.6+2600 with Chandra for 7 ks. The X-ray spectrum is well fit with a single absorbed power law with an index of ∼2. We find a clear sinusoidal modulation in the X-ray light curve with a period of  1.7 ± 0.2 h  , consistent with the period of 1.85 h found before. However, no (partial) eclipses were found. We argue that if the X-ray flare observed in earlier X-ray observations was a type I X-ray burst, then the source can only be an accretion disc corona source at a distance of ∼11–24 kpc (implying a height above the Galactic disc of ∼8–17 kpc). It has also been proposed in the literature that MS 1603.76+2600 is a dipper at ∼75 kpc. We argue that, in this dipper scenario, the observed optical properties of MS 1603.6+2600 are difficult to reconcile with the optical properties one would expect on the basis of comparisons with other high-inclination, low-mass X-ray binaries, unless the X-ray flare was not a type I X-ray burst. In that case, the source can be a nearby soft X-ray transient accreting at a quiescent rate, as was proposed by Hakala et al., or a high-inclination source at ∼15–20 kpc.  相似文献   
12.
1 INTRODUCTION One of the most intriguing phenomena in the late Neoproterozoic (~750 to 543 Ma) is the globa occurrence of thin carbonates that directly overlie glacial deposits in almost every continent (Kennedy 1996; Hoffman et al., 1998; Hoffman and Schrag 2002; Brasier and Shields, 2000; James et al., 2001 Jiang et al., 2003; Nogueira et al., 2003). These “cap carbonates”, commonly several to tens of meters thick, have attracted enormous interests because o their unusually negati…  相似文献   
13.
Reviews of geographic software in this article: DEMO-GRAPHICS: WORLD POPULATIONS AND PROJECTIONS. ESP GAUSS. CEMODEL S. Damus LIMDEP. William H. Greene MICROSTAT 4.1 OTIS PCIPS. (Personal Computer Image Processing System) . H.J. Meyers and R. Bernstein. REGRESSION ANALYSIS OF TIME SERIES (RATS) SPSS/PC+ URBAN DATA MANAGEMENT SOFTWARE (UDMS)  相似文献   
14.
The Lower Permian Wasp Head Formation (early to middle Sakmarian) is a ~95 m thick unit that was deposited during the transition to a non‐glacial period following the late Asselian to early Sakmarian glacial event in eastern Australia. This shallow marine, sandstone‐dominated unit can be subdivided into six facies associations. (i) The marine sediment gravity flow facies association consists of breccias and conglomerates deposited in upper shoreface water depths. (ii) Upper shoreface deposits consist of cross‐stratified, conglomeratic sandstones with an impoverished expression of the Skolithos Ichnofacies. (iii) Middle shoreface deposits consist of hummocky cross‐stratified sandstones with a trace fossil assemblage that represents the Skolithos Ichnofacies. (iv) Lower shoreface deposits are similar to middle shoreface deposits, but contain more pervasive bioturbation and a distal expression of the Skolithos Ichnofacies to a proximal expression of the Cruziana Ichnofacies. (v) Delta‐influenced, lower shoreface‐offshore transition deposits are distinguished by sparsely bioturbated carbonaceous mudstone drapes within a variety of shoreface and offshore deposits. Trace fossil assemblages represent distal expressions of the Skolithos Ichnofacies to stressed, proximal expressions of the Cruziana Ichnofacies. Impoverished trace fossil assemblages record variable and episodic environmental stresses possibly caused by fluctuations in sedimentation rates, substrate consistencies, salinity, oxygen levels, turbidity and other physio‐chemical stresses characteristic of deltaic conditions. (vi) The offshore transition‐offshore facies association consists of mudstone and admixed sandstone and mudstone with pervasive bioturbation and an archetypal to distal expression of the Cruziana Ichnofacies. The lowermost ~50 m of the formation consists of a single deepening upward cycle formed as the basin transitioned from glacioisostatic rebound following the Asselian to early Sakmarian glacial to a regime dominated by regional extensional subsidence without significant glacial influence. The upper ~45 m of the formation can be subdivided into three shallowing upward cycles (parasequences) that formed in the aftermath of rapid, possibly glacioeustatic, rises in relative sea‐level or due to autocyclic progradation patterns. The shift to a parasequence‐dominated architecture and progressive decrease in ice‐rafted debris upwards through the succession records the release from glacioisostatic rebound and amelioration of climate that accompanied the transition to broadly non‐glacial conditions.  相似文献   
15.
The zoned pluton from Castelo Branco consists of Variscan peraluminous S-type granitic rocks. A muscovite>biotite granite in the pluton's core is surrounded successively by biotite>muscovite granodiorite, porphyritic biotite>muscovite granodiorite grading to biotite=muscovite granite, and finally by muscovite>biotite granite. ID-TIMS U–Pb ages for zircon and monazite indicate that all phases of the pluton formed at 310 ± 1 Ma. Whole-rock analyses show slight variation in 87Sr/86Sr310 Ma between 0.708 and 0.712, Nd310 Ma values between − 1 and − 4 and δ18O values between 12.2 and 13.6. These geological, mineralogical, geochemical and isotopic data indicate a crustal origin of the suite, probably from partial melting of heterogeneous Early Paleozoic pelitic country rock. In detail there is evidence for derivation from different sources, but also fractional crystallization linking some of internal plutonic phases. Least-squares analysis of major elements and modelling of trace elements indicate that the porphyritic granodiorite and biotite=muscovite granite were derived from the granodiorite magma by fractional crystallization of plagioclase, quartz, biotite and ilmenite. By contrast variation diagrams of major and trace elements in biotite and muscovite, the behaviours of Ba in microcline and whole-rock δ18O, the REE patterns of rocks and isotopic data indicate that both muscovite-dominant granites were probably originated by two distinct pulses of granite magma.  相似文献   
16.
B. Seth  S. Jung  B. Gruner   《Lithos》2008,104(1-4):131-146
Three dating techniques for metamorphic minerals using the Sm–Nd, Lu–Hf and Pb isotope systems are combined and interpreted in context with detailed petrologic data from crustal segments in NW Namibia. The combination of isochron ages using these different approaches is a valuable tool to testify for the validity of metamorphic mineral dating. Here, PbSL, Lu–Hf and Sm–Nd garnet ages obtained on low- to medium-grade metasedimentary rocks from the Central Kaoko Zone of the Neoproterozoic Kaoko belt (NW Namibia) indicate that these samples were metamorphosed at around 550–560 Ma. On the other hand, granulite facies metasedimentary rocks from the Western Kaoko Zone underwent two phases of high-grade metamorphism, one at ca. 660–625 Ma and another at ca. 550 Ma providing substantial evidence that the 660–625 Ma-event was indeed a major tectonothermal episode in the Kaoko belt. Our age data suggest that interpreting metamorphic ages by applying a single dating method only is not reliable enough when studying complex metamorphic systems. However, a combination of all three dating techniques used here provides a reliable basis for geochronological age interpretation.  相似文献   
17.
Ion-microprobe U–Pb analyses of 589 detrital zircon grains from 14 sandstones of the Alborz mountains, Zagros mountains, and central Iranian plateau provide an initial framework for understanding the Neoproterozoic to Cenozoic provenance history of Iran. The results place improved chronological constraints on the age of earliest sediment accumulation during Neoproterozoic–Cambrian time, the timing of the Mesozoic Iran–Eurasia collision and Cenozoic Arabia–Eurasia collision, and the contribution of various sediment sources of Gondwanan and Eurasian affinity during opening and closure of the Paleotethys and Neotethys oceans. The zircon age populations suggest that deposition of the extensive ~ 1 km-thick clastic sequence at the base of the cover succession commenced in latest Neoproterozoic and terminated by Middle Cambrian time. Comparison of the geochronological data with detrital zircon ages for northern Gondwana reveals that sediment principally derived from the East African orogen covered a vast region encompassing northern Africa and the Middle East. Although most previous studies propose a simple passive-margin setting for Paleozoic Iran, detrital zircon age spectra indicate Late Devonian–Early Permian and Cambrian–Ordovician magmatism. These data suggest that Iran was affiliated with Eurasian magmatic arcs or that rift-related magmatic activity during opening of Paleotethys and Neotethys was more pronounced than thought along the northern Gondwanan passive-margin. For a Triassic–Jurassic clastic overlap assemblage (Shemshak Formation) in the Alborz mountains, U–Pb zircon ages provide chronostratigraphic age control requiring collision of Iran with Eurasia by late Carnian–early Norian time (220–210 Ma). Finally, Cenozoic strata yield abundant zircons of Eocene age, consistent with derivation from arc magmatic rocks related to late-stage subduction and/or breakoff of the Neotethys slab. Together with the timing of foreland basin sedimentation in the Zagros, these detrital zircon ages help bracket the onset of the Arabia–Eurasia collision in Iran between middle Eocene and late Oligocene time.  相似文献   
18.
Structural, petrographic and geochronologic studies of the Kampa Dome provide insights into the tectonothermal evolution of orogenic crust exposed in the North Himalayan gneiss domes of southern Tibet. U–Pb ion microprobe dating of zircons from granite gneiss exposed at the deepest levels within the dome yields concordia 206Pb/238U age populations of 506 ± 3 Ma and 527 ± 6 Ma, with no evidence of new zircon growth during Himalayan orogenesis. However, the granite contains penetrative deformation fabrics that are also preserved in the overlying Paleozoic strata, implying that the Kampa granite is a Cambrian pluton that was strongly deformed and metamorphosed during Himalayan orogenesis. Zircons from deformed leucogranite sills that cross-cut Paleozoic metasedimentary rocks yield concordant Cambrian ages from oscillatory zoned cores and discordant ages ranging from ca. 491–32 Ma in metamict grains. Since these leucogranites clearly post-date the metasedimentary rocks they intrude, the zircons are interpreted as xenocrysts that are probably derived from the Kampa granite. The Kampa Dome formed via a series of progressive orogenic events including regional ~ N–S contraction and related crustal thickening (D1), predominately top-to-N ductile shearing and crustal extension (D2), top-to-N brittle–ductile faulting and related folding on the north limb of the dome, localized top-to-S faulting on the southern limb of the dome, and crustal doming (D3), and continued N–S contraction, E–W extension and doming (D4). Structural and geochronologic variability amongst adjacent North Himalayan gneiss domes may reflect changes in the magnitude of crustal exhumation along the North Himalayan antiform, possibly relating to differences in the mid-crustal geometry of the exhuming fault systems.  相似文献   
19.
The Scandinavian Caledonides have been viewed as resulting from either a single Silurian (i.e. Scandian) event or from polycyclic orogenies involving several collisions on the margin of Baltica. Early studies of the Kalak Nappe Complex (KNC) in Finnmark, Arctic Norway, led to the hypothesis of an Early Cambrian-Early Ordovician (520-480 Ma) Finnmarkian Orogeny, though the nature of this tectonic event remains enigmatic. In this contribution we have employed in situ UV laser ablation Ar-Ar dating of fine-grained phyllite and schist from the eastern Caledonides of Arctic Norway to investigate the presence of pre-Scandian tectonometamorphic events. U-Th-Pb detrital zircon and whole rock Sm-Nd analyses have been used to test the regional stratigraphic correlations of these metasedimentary rocks. These results indicate that the Berlevåg Formation within the Tanafjord Nappe, previously assumed to be part of the KNC, was deposited after 1872 Ma and prior to a low temperature hydrothermal event at 555 ± 15 Ma. It has a likely provenance on the Baltica continent, lacks any Grenville-Sveconorwegian detrital zircons, and thus cannot be part of the KNC which contains abundant detritus in this age range. Instead the Berlevåg Formation is interpreted as part of the Laksefjord Nappe Complex, which structurally underlies the KNC. Laser-ablation argon-argon dating also shows that late Caledonian (i.e. Scandian) tectonometamorphism affected both the KNC and its immediate footwall at c. 425 ± 15 Ma. This is corroborated by a step-heating argon-argon muscovite age of 424 ± 3 Ma which is interpreted as dating cooling. However, within two samples from the KNC, an earlier (Middle-Late Cambrian) metamorphic event is also recorded. A biotite-grade schist yielded an Ar-Ar inverse isochron age of 506 ± 17 Ma from whole rock surfaces, in which the mineral domains are too fine-grained to date individually. An early generation of muscovite from a coarser-grained amphibolite-facies sample yielded an inverse isochron of 498 ± 13 Ma. Both isochron ages have atmospheric argon intercept values. Previous studies have documented similar Cambrian ages in the Caledonian nappes below the KNC. These results suggest correlative tectonometamorphic events in the eastern KNC and its footwall at c. 500 Ma. This Cambrian event may reflect the arrival of the Kalak Nappe Complex as a previously constructed exotic mobile belt onto the margin of Baltica. Combined with recent studies from the western Kalak Nappe Complex, the results do not support the traditional constraint on the Finnmarkian Orogeny sensu stricto. However they vindicate classic tectonic models involving a Cambrian accretion event.  相似文献   
20.
Chemical structure of Jurassic vitrinites isolated from the coals in basins in NW China have been checked using solid state 13C NMR and flash pyrolysis-GC/MS. Study shows some Jurassic collodetrinites are rich in aliphatic products in pyrolysates, consisting with the high amount of methylene carbon in 13C NMR spectra. In contrast, pyrolysates of Jurassic collotelinites are rich in phenols and alkylbenzenes. Also one Pennsylvanian and one Permian vitrinite selected from the Ordos basin, NW China have been checked for comparison. The proportion of aliphatics is low in pyrolysates, and aliphatic carbon peak in 13C NMR spectrum of Permian vitrinite is mostly composed of gas-prone carbons compared with collodetrinites in those Jurassic basins. But both pyrolysis and 13C NMR data shows the Pennsylvanian vitrinite is not only gas-prone but also oil-prone. Relatively high proportion of long chain aliphatic structure of some Jurassic vitrinite in Junggar, Turpan-Hami basins may be due to the contribution of liptodetrinites, which may be included during the formation of vitrinites. And it seems that suberinite is the most possible precursor of long chain aliphatics in the structure of Jurassic collodetrinite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号