首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1270篇
  免费   418篇
  国内免费   660篇
测绘学   7篇
大气科学   8篇
地球物理   274篇
地质学   1740篇
海洋学   156篇
天文学   4篇
综合类   67篇
自然地理   92篇
  2024年   12篇
  2023年   31篇
  2022年   55篇
  2021年   76篇
  2020年   82篇
  2019年   102篇
  2018年   84篇
  2017年   116篇
  2016年   79篇
  2015年   96篇
  2014年   108篇
  2013年   124篇
  2012年   126篇
  2011年   101篇
  2010年   93篇
  2009年   99篇
  2008年   81篇
  2007年   100篇
  2006年   101篇
  2005年   67篇
  2004年   101篇
  2003年   69篇
  2002年   63篇
  2001年   43篇
  2000年   49篇
  1999年   42篇
  1998年   35篇
  1997年   48篇
  1996年   34篇
  1995年   36篇
  1994年   24篇
  1993年   18篇
  1992年   12篇
  1991年   12篇
  1990年   8篇
  1989年   7篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1979年   3篇
  1954年   2篇
排序方式: 共有2348条查询结果,搜索用时 187 毫秒
61.
库车盆地的早白垩世地层为一套干旱气候条件下的红层沉积,包括洪积扇砾岩、间歇性河流砂砾岩、风成细砂岩和粉砂岩、沙漠湖相紫红色泥岩等类型的沉积,组成一个较为典型的沙漠沉积体系。在库车河剖面,下白垩统红层中发育一些厚层至块状的“高能细砂岩和高能粉砂岩”,多为岩屑长石石英砂岩和长石岩屑石英砂岩。它们以良好的分选性和较高的结构成熟度、较细的粒度、较低的成分成熟度和大型交错层理的发育为特征,显示出较为明显的风成沉积特点。  相似文献   
62.
On the basis of Discontinuous Deformation Analysis (DDA), and considering the moderate intrusion of specific block boundaries to different extents, the first-order block motion model is established for the northeastern margin of Qinghai-Xizang(Tibet) block and the kinematical model for depicting deformation of small regions as well by using GPS observations of three periods (1991, 1999 and 2001). By simulating, we obtained the motion features of the firstorder blocks between the large WWN faults on the sides of the studied region, the distribution features of the principal strain rate field and the inhomogeneous motion features with spacetime of the faults in the northern boundary of the Qinghai-Xizang (Tibet) block.  相似文献   
63.
柴达木盆地北缘"沙柳河岩群"的重新启用   总被引:12,自引:0,他引:12  
柴北缘变质基底岩系中的表壳岩包含了岩石组合、沉积建造、变质程度和地质时代不同的两套岩石组合。其中,分布在柴达木地块的沙柳河、鱼卡河等地的以大理岩、石英岩和含石榴石英片岩为主含榴辉岩透镜体的表壳岩系,时代限定在1.0~1.3Ga,与分布在欧龙布鲁克微陆块的全吉山、德令哈等地形成时代大约2.3~2.4Ga的达肯大坂岩群有着明显的不同,后者以斜长角闪岩、石榴石英片岩和黑云变粒岩为主,并具有较强的钾质混合岩化。由于前者岩石组合清楚,沉积建造特征明显,构造意义独特,且有一定的区域分布性和可比性,所以具备建立新的岩群的条件。根据定名优先的原则,决定重新启用沙柳河岩群。  相似文献   
64.
传统型铂族矿产,系指与镁铁质岩浆成矿作用有关的铂族矿产资源。华力西运动时期,扬子地台西南缘沿超壳深断裂带发生的大陆裂谷作用,为来自上地幔的镁铁质(拉斑玄武岩质)岩浆的上涌和侵位提供了极为有利的前提条件。含铂基性超基性岩的时空分布,受到大陆裂谷作用的主要发生发展时期和裂谷活动带的控制。通过对典型矿床特征及其成矿作用的探讨,论述了扬子地台西南缘主要的铂族矿床类型;并从四维成矿的角度,阐述了对区域成矿规律的一些基本认识。  相似文献   
65.
扬子克拉通周边及其隆起边缘的铅锌矿床   总被引:30,自引:7,他引:30       下载免费PDF全文
扬子准地台为大型克拉通碳酸盐发育的地区,从震旦系到中三叠统为典型盖层沉积,其中许多地层中不乏碳酸盐沉积。新中国建国以来,在其周边及其隆起边缘的碳酸盐地层中,陆续发现了许多层控铅锌矿床。近几年来,随着地质大调查的开展,又发现一批很有希望的铅锌矿化集中区。笔者总结了这些铅锌矿床的地质特征,并将这些矿床与国外的MVT矿床进行对比,探讨它们的矿质来源、成矿溶液、成矿机制和成矿控制因素等。  相似文献   
66.
67.
Most ore-forming characteristics of the Langshan-Zha‘ertaishan hydrothermal exhalation belt, which consists of the Dongshengmiao, Huogeqi, Tanyaokou and Jiashengpan large-superlarge Zn-Pb-Cu-Fe sulfide deposits, are most similar to those of Mesoproterozoic SEDEX-type provinces of the world. The characteristics include: (1) All deposits of this type in the belt occur in third-order fault-basins in the Langshan-Zha‘ertaishan aulacogen along the northern margin of the North China Platform; (2) these deposits with all their orebodies hosted in the Mesoproterozoic impure dolomite-marble and carbonaceous phyllite (or schists) have an apparent stratabound nature; ores display laminated and banded structures, showing clear depositional features; (3) there is some evidence of syn-sedimentary faulting, which to a certain extent accounts for the temporal and spatial distribution and the size of the orebodies in all deposits and the formation of intrabed conglomerates and breccias; (4) they show lateral and vertical zonation of sulfides; (5) The Cu/(Pb Zn Cu) ratio of the large and thick Pb Zn Cu orebodies gradually decreases from bottom to top; and (6) barite is interbedded with pyrites and sometimes with sphalerite. However, some characteristics such as the Co/Ni radio of the pyrites, the volcanism, for example, of the Langshan-Zha‘ertalshan metallogenic belt, are different from those of the typical SEDEX deposits of the world. The meta-basic volcanic rock in Huogeqi, the sodic bimodal volcanic rocks in the Dongshengmiao and potassic bimodal-volcanic rocks with blastoporphyfitic and blasto-glomeroporphyritic texture as well as blasto-amygdaloidal structure in the Tanyaokou deposits have been discovered in the only ore-bearing second formation of the Langshan Group in the past 10 years. The metallogeny of some deposits hosted in the Langshan Group is closely related to syn-sedimentary volcanism based on the following facts: most of the lead isotopes in sphalerite, galena, pyrite, pyrrhotite and chalcopyrite plot on both sides of the line for the mantle or between the lines for the mantle and lower crust in the lead isotope composition diagram; cobalt content of some pyrites samples is much higher than the nickel content (Co/Ni= 11.91-12.19). Some volcanic blocks and debris have been picked out from some pyritic and pyrrhotitic ores. All Zn-Pb-Cu-Fe sulfide orebodies in these deposits occur in the strata overlying metamorphic volcanic rocks in the only ore-bearing second formation. In the Jiashengpan deposit that lacks syn-sedimentary volcanic rocks in the host succession only Pb and Zn ores occur without Cu ore, but in the Dongshengmiao, Tanyaokou and Huogeqi deposits with syn-sedimentary volcanic rocks in the host succession Cu ores occur. This indicates a relatively higher ore-forming temperature. The process of synsedimentary volcanic eruption directly supplied some ore-forming elements, and resulted in secular geothermal anomaly favorable for the circulation of a submarine convective hydrothermal system, which accounts for the precipitation of deep mineralizing fluids exhaling into anoxidic basins along the syn-sedimentary fault system in the Langshan-Zha‘ertai rift. The Dongshengmiao, Tanyaokou, and Huogeqi deposits hosted in the Langshan Group appear to be a transitional type of mineral deposit between SEDEX and VMS-types but with a bias towards SEDEX, while the Jiashengpan deposit hosted in the Zha‘ertai Group is of a characteristic SEDEX type. This evidence, together with other new discoveries of Mesoproterozoic volcanic rocks and the features of lithogeny and metallogeny of the Bayun Obo deposit in the neighborhood emphasize the diversity, complexity and uniqueness of the Mesoproterozoic Langshan-Zha‘ertal-Bayun Obo ore belt.  相似文献   
68.
The Permian Cedar Mesa Sandstone of south‐east Utah is a predominantly aeolian succession that exhibits a complex spatial variation in sedimentary architecture which, in terms of palaeogeographic setting, reflects a transition from a dry erg centre, through a water table‐controlled aeolian‐dominated erg margin, to an outer erg margin subject to periodic fluvial incursion. The erg margin succession represents a wet aeolian system, accumulation of which was controlled by progressive water table rise coupled with ongoing dune migration and associated changes in the supply and availability of sediment for aeolian transport. Variation in the level of the water table relative to the depositional surface determined the nature of interdune sedimentary processes, and a range of dry, damp and wet (flooded) interdune elements is recognized. Variations in the geometry of these units reflect the original morphology and the migratory behaviour of spatially isolated dry interdune hollows in the erg centre, locally interconnected damp and/or wet interdune ponds in the aeolian‐dominated erg margin and fully interconnected, fluvially flooded interdune corridors in the outer erg margin. Relationships between aeolian dune and interdune units indicate that dry, damp and wet interdune sedimentation occurred synchronously with aeolian bedform migration. Temporal variation in the rates of water‐table rise and bedform migration determined the angle of climb of the erg margin succession, such that accumulation rates increased during periods of rapidly rising water table, whereas sediment bypassing (zero angle of climb) occurred in the aftermath of flood events in response to periods of elevated but temporarily static water table. During these periods in the outer erg margin, the expansion of fluvially flooded interdunes in front of non‐climbing but migrating dunes resulted in the amalgamation of laterally adjacent interdunes and the generation of regionally extensive bypass (flood) supersurfaces. A spectrum of genetic depositional models is envisaged that accounts for the complex spatial and temporal evolution of the Cedar Mesa erg margin succession.  相似文献   
69.
The middle–late Campanian was marked by an increase in the bioprovinciality of calcareous microfossil assemblages into distinct Tethyan, Transitional, and Austral Provinces that persisted to the end of the Maastrichtian. The northwestern Australian margin belonged to the Transitional Province and the absence of key Tethyan marker species such as Radotruncana calcarata and Gansserina gansseri has led petroleum companies operating in the area to use the locally developed KCCM integrated calcareous microfossil zonation scheme. The KCCM zonation is a composite scheme comprising calcareous nannofossil (KCN), planktonic foraminiferal (KPF) and benthonic foraminiferal (KBF) zones. This paper presents the definitions and revisions of Zones KCCM8–19, from the highest occurrence (HO) of Aspidolithus parcus constrictus to the lowest occurrence (LO) of Ceratolithoides aculeus, and builds on our previous early–late Maastrichtian study. The presence of a middle–upper Campanian disconformity is confirmed by microfossil evidence from the Vulcan Sub-basin, Exmouth and Wombat plateaus, and the Southern Carnarvon Platform. In the Vulcan Sub-basin and on the Exmouth Plateau (ODP Hole 762C) the hiatus extends from slightly above the LO of common Rugoglobigerina rugosa to above the LO of Quadrum gothicum. On the Wombat Plateau (ODP Hole 761B) it spans from above the LO of Heterohelix semicostata to above the LO of Quadrum gothicum; and in the Southern Carnarvon Platform the disconformity has its longest duration from above the HO of Heterohelix semicostata to above the LO of Quadrum sissinghii. A significant revision of the events which define Zones KCCM18 and 19 was necessary owing to the observation that the LO of Ceratolithoides aculeus occurs below the HOs of Archaeoglobigerina cretacea and Stensioeina granulata incondita and the LO of common Rugoglobigerina rugosa. In the original zonation these events were considered to be coincident.  相似文献   
70.
The structure of the mid-Norwegian volcanic Vøring margin at the onset of the Maastrichtian–Paleocene extension phase reflects the cumulative effect of earlier consecutive rifting events. Lateral structural differences present on the margin at that time are a consequence of migration of the location of maximum extension in time between Norway and Greenland. The most important imprints (Moho depth, thermal structure) of these events on the lithosphere are incorporated in a numerical simulation of the final extension phase. We focus on a possible mechanism of formation of the Vøring Marginal High and address the relationship between spatial and temporal evolution of crustal thinning and thickening, uplift of the surface and strength of the lithosphere.It is found that the Vøring Basin formed the strongest part of the margin which explains why the Maastrichtian–Paleocene rift axis was not located here but instead jumped westward with respect to the earlier rift axes locations. The modeling study predicts that local crustal thickening during extension can be expected when large lateral thermal variations are present in the lithosphere at the onset of extension. Negative buoyancy induced by lateral temperature differences increases downwelling adjacent to the rifting zone; convergence of material at the particular part of the margin is mainly taken up by the lower crust. The model shows that during the final phase of extension, the crust in the Vøring Marginal High area was thickened and the surface uplifted. It is likely that this dynamic process and the effects of magmatic intrusions both acted in concert to form the Marginal High.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号