首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   12篇
  国内免费   106篇
测绘学   4篇
大气科学   2篇
地球物理   10篇
地质学   198篇
海洋学   10篇
天文学   1篇
综合类   3篇
自然地理   32篇
  2024年   1篇
  2023年   1篇
  2022年   29篇
  2021年   18篇
  2020年   15篇
  2019年   22篇
  2018年   13篇
  2017年   13篇
  2016年   13篇
  2015年   17篇
  2014年   11篇
  2013年   17篇
  2012年   14篇
  2011年   11篇
  2010年   8篇
  2009年   7篇
  2008年   7篇
  2007年   10篇
  2006年   9篇
  2005年   6篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1990年   1篇
排序方式: 共有260条查询结果,搜索用时 670 毫秒
91.
改良粉土强度的冻融循环效应与微观机制   总被引:2,自引:0,他引:2  
谈云志  吴翩  付伟  万智  张华  张振华 《岩土力学》2013,34(10):2827-2834
为了研究冻融循环对改良粉土强度的影响规律及其作用机制,开展了不同初始压实度和初始含水率试样的冻融循环试验。对经历不同冻融循环次数作用后的试样进行无侧限抗压强度试验,探讨了冻融循环作用对改良粉土的长期强度的影响规律。试验结果表明,随着冻融循环次数增加,改良粉土的抗压强度下降,最终在6次冻融循环后趋于稳定;相同的冻融循环次数条件下,初始含水率越大,改良粉土的抗压强度衰减幅度越大。为了寻找冻融循环作用对改良粉土孔隙结构的影响规律,进而揭示冻融循环对试样结构损伤的机制,开展了改良粉土的细观孔隙结构试验。试验结果表明,不同的冻融循环次数和初始含水率对小孔径孔隙( 10 nm)之间的结构影响不大;冻融循环作用主要损伤了大孔径孔隙(0.01~100 μm)之间的结构,从而降低了改良粉土的强度。  相似文献   
92.
粉砂土反复冻胀融沉特性试验研究   总被引:3,自引:0,他引:3  
严晗  王天亮  刘建坤 《岩土力学》2013,34(11):3159-3165
针对深季节冻土区的特殊环境,通过室内试验研究了粉砂土在不同初始含水率、干密度、荷载、冻融次数条件下的反复冻胀、融沉特性。研究结果表明:粉砂土的冻结温度为-1.03 °C;其冻胀融沉变形随冻融次数的增加呈现波浪式起伏变化,并最终趋于稳定状态;经历多次冻融后,干密度较大试样整体表现为膨胀,干密度较小试样整体表现为压密;上部荷载在抑制冻胀的同时加大了试样的整体融沉变形,却降低了每次冻融的冻胀率和融沉系数;存在一个最优初始含水率,该含水率条件下,试样经历多次冻融后的高度不发生变化;由于外界水源的补给,冻融后试样内部含水率均大于初始含水率;干密度和顶端荷载的增大均有效地抑制了外界水源的补给;4次冻融循环后,粉砂土的冻胀率、融沉系数均逐渐趋于稳定。  相似文献   
93.
寒区工程被破坏的最主要原因之一就是冻融循环作用,冻融循环过程可导致土的工程性质发生较大的变化,进而导致寒区工程设施产生变形,甚至失稳。对冻融循环作用下土的结构、基本物理性质以及力学性质进行了分析和总结。研究发现:冻融循环作用后土颗粒之间的原有结构被破坏,从而形成新的结构,土中团粒会发生分裂和团聚作用,团粒粒径向均一性趋势发展,并且在不同的内部及外部条件下,土会产生不同的构造;冻融循环后,土的渗透性增大,塑性指数减小。松散土和密实土的密度以及孔隙比具有不同的变化趋势,并且可使无湿陷性的黄土状土中大孔隙增加并产生湿陷性。土的力学性质变化趋势不一,一方面这与土的构造变化直接相关,另一方面冻融循环试验方法的不同也是引起研究结果差异性较大的重要原因。因此,需要建立冻融循环作用下土工程性质变异性的判定方法、评价及预测体系,而这些也可能成为未来研究工作的方向。  相似文献   
94.
多年冻土地区构筑物沉降变形分析   总被引:2,自引:0,他引:2  
根据现场观测和数值分析,将多年冻土地区构筑物的沉降变形归结为几个具有不同机制的物理力学过程共同作用所致。伴随着冻土上限下降所产生的融沉,由于构筑物的修建引起多年冻土层升温而产生的高温冻土的蠕变和活动层的未冻土在暖季发生的蠕变,以及由于活动层中冻融循环改变了土的工程性质而导致的附加沉降变形。基于青藏公路和青藏铁路的修建和维护的实践,分析了以上几个可能引起沉降的原因。  相似文献   
95.
方云  乔梁  陈星  严绍军  翟国林  梁亚武 《岩土力学》2014,35(9):2433-2442
风化是云冈石窟目前所面临的严重的地质病害之一,温度和水分的变化是造成石窟岩体风化的重要原因,尤其是在循环冻融条件下岩体更易风化,因此,利用室内试验研究循环冻融条件下云冈石窟砂岩的物理力学性质,对于石窟岩体的稳定性评价和保护具有重要的意义。将取自云冈石窟的砂岩岩样分为饱水组、干燥组和对比组3组,通过对饱水组和干燥组岩样进行35次循环冻融试验,模拟云冈石窟砂岩的风化过程。在冻融循环开始前以及每5次冻融循环结束后,量测岩样的质量、体积,并利用超声检测分析仪对各岩样进行超声纵波测试;利用INSTRON-1346岩石伺服试验机对上述3组砂岩岩样进行单轴压缩试验,并对试验后的岩样进行SEM微观结构分析。通过试验研究,得到不同含水状态下云冈石窟砂岩岩样的冻融破坏特征以及不同循环冻融次数后岩样体积、质量、超声波纵波波速、砂岩的单轴应力-应变全过程曲线、抗压强度、抗冻系数以及微观结构的变化,分析归纳出循环冻融条件下云冈石窟砂岩的主要物理力学特性。  相似文献   
96.
冻融作用下冻结黄土黏聚力长期强度变化规律   总被引:2,自引:0,他引:2  
周泓  张豫川  张泽  冯文杰  周波  武俊杰 《岩土力学》2014,35(8):2241-2246
以陕西富平重塑黄土为研究对象,使土样在封闭系统下经历不同次数的冻融循环作用,分析不同次数的冻融循环作用下土体黏聚力的变化规律。试验利用球形模板压入试验测定冻结黄土的相对瞬时强度和长期强度,结果表明,第4次冻融循环后冻结黄土的相对瞬时强度最大,之后在第6次大幅度降低,第8次又大幅度增加,但小于第4次,第10次之后逐渐趋于稳定。冻结黄土的长期强度在冻融循环第8次时最大,第6次和10次强度相近,处于中间水平,第4、50、100次时强度最低。相对瞬时强度的变化和其孔隙比、密度的变化整体上是相互对应的,这种变化规律与冻融过程中的水分迁移有着密切的关系。长期强度与物理性质的关系并不明显,它是土样内部结构、矿物成分以及物理性质的综合反映。  相似文献   
97.
全球气候变暖导致三江源地区雪线上升,冰川后移,降水和径流减少,草场退化,土壤沙化,使本来就十分脆弱的生态环境更加恶化。根据三江源地区当前所处的实际情况,在分析三江源地区土壤侵蚀环境背景以及土壤侵蚀营力作用的基础上,归纳总结了三江源地区土壤侵蚀类型与特征,重点研究了冻融侵蚀分布范围和强度、分布规律以及评价指标体系。结果表明:三江源地区各种土壤侵蚀类型中,冻融侵蚀分布范围最广;不同强度的冻融侵蚀空间分布差异显著。  相似文献   
98.
99.
冻融作用下岩石力-热-水耦合本构模型研究   总被引:1,自引:0,他引:1  
王震  朱珍德  陈会官  朱姝 《岩土力学》2019,40(7):2608-2616
在寒区隧道工程中,冻胀的水分迁移作用加剧了隧道围岩的冻融破坏。耦合水分迁移作用的岩石本构模型对防治冻融渗漏、崩塌等隧道围岩灾害有着重要意义。基于内状态变量理论,将冻胀过程中的水分迁移量作为本征变量引入Helmholtz自由能,在热力学框架下建立了一个岩石力-热-水耦合本构模型。模型描述了温度和水分迁移对冻融后岩石损伤阈值、等向强化饱和值、等向强化速率等力学参数的影响。模拟了岩石冻融后力学性质的劣化。区别于全量经验公式,本模型以增量形式给出,为复杂应力历史条件下的数值模拟提供了便利。通过将模型模拟曲线与冻融后岩石常规三轴压缩试验曲线进行对比,初步验证模型的可靠性,为实际寒区工程的冻胀破坏预测提供参考。  相似文献   
100.
严健  何川  晏启祥  许金华 《岩土力学》2019,40(9):3593-3602
以国道317线雀儿山隧道为工程依托,进行了隧道洞口冰碛地层的冻胀力原位测试,同时结合数值模拟、理论模型计算等方法,得到了冻融圈厚度、冻胀压力以及冻结前后衬砌结构内外测的应力。在此基础上,计算得到了衬砌结构的轴力、弯矩分布和变化规律,并与已有研究结果进行了比较分析。研究结果表明:寒区隧道洞口段冰碛地层作为高原常见季冻土受低温影响显著,低温持续22 h时冻融圈厚度达2 m左右;采用隧道冻胀力计算模型计算得到的冻胀压力在19.8~158.3 kPa之间,原位测试的冻胀压力在40~240 kPa之间,其中拱脚处最小,仰拱处最大;冰碛地层冻结前后的衬砌结构内侧、外侧应力各自具有复杂的变化和分布规律,冻结状态下衬砌结构轴力呈“扇”形分布,弯矩呈“蝶”形分布。与相关研究成果比较分析表明,现场采用的原位测试方法合理,结果更准确。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号