首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1313篇
  免费   204篇
  国内免费   372篇
测绘学   15篇
大气科学   145篇
地球物理   484篇
地质学   626篇
海洋学   394篇
天文学   8篇
综合类   86篇
自然地理   131篇
  2024年   5篇
  2023年   26篇
  2022年   49篇
  2021年   49篇
  2020年   41篇
  2019年   53篇
  2018年   40篇
  2017年   48篇
  2016年   56篇
  2015年   74篇
  2014年   78篇
  2013年   83篇
  2012年   64篇
  2011年   93篇
  2010年   98篇
  2009年   83篇
  2008年   102篇
  2007年   99篇
  2006年   116篇
  2005年   69篇
  2004年   80篇
  2003年   65篇
  2002年   64篇
  2001年   57篇
  2000年   41篇
  1999年   47篇
  1998年   29篇
  1997年   31篇
  1996年   27篇
  1995年   21篇
  1994年   17篇
  1993年   9篇
  1992年   17篇
  1991年   14篇
  1990年   13篇
  1989年   7篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1985年   6篇
  1984年   1篇
  1983年   2篇
  1981年   3篇
  1980年   1篇
  1976年   1篇
  1973年   1篇
  1954年   1篇
排序方式: 共有1889条查询结果,搜索用时 15 毫秒
81.
Understanding the undrained strength of fine-grained soils has been of interest to geotechnical researchers from many practical considerations. In several civil engineering applications, water content of soil is quite high being near or above the liquid limit of soils, and understanding the factors responsible for imparting the strength of soil at high water contents is of great significance. Recently, it has been reported in the literature that the shear strength of soils at these limiting water contents has significant variation. However, the reasons and the factors that probably influence for this variation have not been reported in the literature. This experimental investigation is an attempt in the direction of understanding the reasons for the variation in the undrained strength at higher limiting water content, namely liquid limit considering the various influencing factors like clay mineralogy and fine-sand content present in soil used for determining liquid limit. The results from this study are quite revealing and have been explained based on the mechanisms controlling the undrained strength at liquid limit.  相似文献   
82.
宜居地球、地外生命探索以及资源勘查等的需求使真核生物的早期溯源和演化趋势研究成为国际热点.根据已发现实体化石、分子化石和分子钟证据,将元古宙真核藻类演化划分为环境准备(2.45~1.70 Ga)、缓慢发展(1.70~0.80 Ga)、剧烈波动(0.80~0.64 Ga)、快速辐射(0.64~0.54 Ga)四个阶段.元古宙真核生物的出现、演化和辐射进程与地球氧化和极端气候事件(如冰期)的发生具耦合性,表现出早期生命与地球表层环境的协同演化.真核藻类在1.70~0.80 Ga期间的缓慢演化可能与长期较低的大气氧含量(约为现今水平的1%~10%PAL)有关.低的大气-海洋氧化程度不仅限制了真核藻类生存空间,也通过对氮、磷等营养元素的供应约束,限制了真核藻类初级生产力水平.因此,地球表层氧化可能是地球宜居演化,并孕育出真核生物等各种复杂生命的主要原因.从地球系统形成与演变的角度探索生物圈演化或能对生命的过去和未来给出更为可靠的答案.  相似文献   
83.
哈尔滨市地下水中29种抗生素分布特征研究   总被引:1,自引:1,他引:0  
当前对抗生素滥用监管及其研究正在加强,近年来中国主要水域中抗生素均有不同程度的检出,地表水及地下水中抗生素的污染状况持续受到关注。因进入环境中的抗生素种类繁多、结构复杂,一般实验室难以实现同时分析多种类抗生素。本文在哈尔滨市共采集地下水样品26组,采样范围包括人口密集、工业生产、农畜业等生活生产地区。利用超高效液相色谱-三重四极杆串联质谱联用技术分析了样品中的磺胺类、喹诺酮类、大环内酯类、β-内酰胺类、四环素类、林可酰胺类等6大类共29种典型抗生素含量,研究了哈尔滨市地下水中典型抗生素的检出及分布状况。结果表明:①哈尔滨市地下水中6大类典型抗生素均有不同程度检出,其中以磺胺类、喹诺酮类、大环内酯类、四环素类为主,检出率分别为61.5%、46.2%、42.3%、38.5%;②哈尔滨市地下水检出的抗生素含量范围在0.02~612ng/L之间,其中磺胺噻唑、磺胺嘧啶、林可霉素检出的最高浓度超过100ng/L,相比于国内外部分地区(如中国北京、天津,西班牙巴塞罗那)喹诺酮类整体含量偏低;③检出抗生素含量较高的采样点位主要分布在城市的中部、南部和东部地区,这些区域也是该市人口相对密集区,且附近普遍分布有制药厂、家禽牲畜养殖厂、城市排污口等。由此揭示了哈尔滨市城市地下水中抗生素分布特征受人类生产生活活动影响且具有明显的相关性。  相似文献   
84.
汪实  朱鑫  黎旭荣  罗思亮 《中国地质》2021,48(4):1177-1187
广东雷州半岛位于中国大陆最南端,是中国菠萝、香蕉、甘蔗等农产品重要产地。土壤氮、磷、钾等养分是作物生长需要最多的营养元素,对农业发展至关重要。文章通过对雷州半岛土壤取样,首次对该地区土壤氮磷钾的背景特征进行了分析,研究了不同成土母质、不同土地利用类型氮磷钾的含量水平,探讨了氮磷钾人为影响因素和时空演化规律,并进行了土壤肥力评价。研究发现,雷州半岛土壤中氮、磷、钾分布受地质背景制约,并受人为活动干扰强烈,氮、磷受人类活动影响显著,钾受人为扰动程度较轻。与20世纪90年代相比,表层土壤磷元素含量增幅较大,钾元素含量与前期相当。土壤肥力评价结果表明,雷州半岛土壤富磷,缺钾,局部缺氮。  相似文献   
85.
This study delineated spatially and temporally variable runoff generation areas in the Sand Mountain region pasture of North Alabama under natural rainfall conditions, and demonstrated that hydrologic connectivity is important for generating hillslope response when infiltration‐excess (IE) runoff mechanism dominates. Data from six rainfall events (13·7–32·3 mm) on an intensively instrumented pasture hillslope (0·12 ha) were analysed. Analysis of data from surface runoff sensors, tipping bucket rain gauge and HS‐flume demonstrated spatial and temporal variability in runoff generation areas. Results showed that the maximum runoff generation area, which contributed to runoff at the outlet of the hillslope, varied between 67 and 100%. Furthermore, because IE was the main runoff generation mechanism on the hillslope, the data showed that as the rainfall intensity changed during a rainfall event, the runoff generation areas expanded or contracted. During rainfall events with high‐intensity short‐ to medium‐duration, 4–8% of total rainfall was converted to runoff at the outlet. Rainfall events with medium‐ to low‐intensity, medium‐duration were found less likely to generate runoff at the outlet. In situ soil hydraulic conductivity (k) was measured across the hillslope, which confirmed its effect on hydrologic connectivity of runoff generation areas. Combined surface runoff sensor and k‐interpolated data clearly showed that during a rainfall event, lower k areas generate runoff first, and then, depending on rainfall intensity, runoff at the outlet is generated by hydrologically connected areas. It was concluded that in IE‐runoff‐dominated areas, rainfall intensity and k can explain hydrologic response. The study demonstrated that only connected areas of low k values generate surface runoff during high‐intensity rainfall events. Identification of these areas would serve as an important foundation for controlling nonpoint source pollutant transport, especially phosphorus. The best management practices can be developed and implemented to reduce transport of phosphorus from these hydrologically connected areas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
86.
Excessive terrestrial nutrient loadings adversely impact coral reefs by primarily enhancing growth of macroalgae, potentially leading to a phase‐shift phenomenon. Hydrological processes and other spatial and temporal factors affecting nutrient discharge must be examined to be able to formulate effective measures for reducing nutrient export to adjacent reefs. During storm events and baseflow periods, water samples were obtained from the tropical Todoroki River, which drains an intensively agricultural watershed into Shiraho coral reef. In situ nutrient analyzers were deployed for 6 months to hourly measure dissolved nutrient (NO3‐N and PO43−‐P) concentrations. Total phosphorus (TP) and suspended solid concentration (TSS) were increased by higher rainfall intensity (r = 0·94, p < 0·01) and river discharge Q (r = 0·88, p < 0·01). In contrast, NO3‐N concentration tends to decrease drastically (e.g. from 3 to 1 mg l−1) during flood events. When base flow starts to dominate afterwards, NO3‐N manifested an increasing trend, but decreases when baseflow discharge becomes low. This counter‐clockwise hysteresis for NO3‐N highlights the significant influence of groundwater discharge. N delivery can therefore be considered a persistent process compared to sediment and P discharge, which are highly episodic in nature. Based on GIS analysis, nutrient concentration along the Todoroki River was largely affected by the percentage of sugarcane/bare areas and bedrock type. The spatial distribution of N concentration in the river reflects the considerable influence of subsurface geology—higher N levels in limestone‐dominated areas. P concentrations were directly related to the total length of artificial drainage, which enhances sediment transport. The use of high‐resolution monitoring data coupled with GIS‐based spatial analysis therefore enabled the clarification of control factors and the difference in the spatio‐temporal discharge characteristics between N and P. Thus, although erosion‐reduction schemes would reduce P discharge, other approaches (e.g. minimize fertilizer) are needed to reduce N discharge. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
87.
88.
Hydrological processes are known to have a considerable effect on nutrient transport from agricultural land to watercourses. In cold temperate regions peak discharges are caused not only by storm conditions but also by melting of snow and frost. The objective of this work was to investigate the effects of snow and frost melt on concentrations of phosphorus and suspended solids. The samples were taken using flowweighted automatic sampling techniques from two agricultural drainage basins. During the beginning of the snowmelt period the concentration of suspended solids was rather low by comparison with the total phosphorus concentration and the discharge. The different behaviour compared with the relationships found during storm conditions was probably caused by continuous extraction of the soil surface by low ionic concentration melt water, and to some extent by leaching from plant residues. The gradual decrease of total phosphorus concentration during the frost thawing period could be attributed to the gradually increasing proportion of the subsurface and ground water discharge in the runoff.  相似文献   
89.
Regression results based on data from 46 northern temperate lakes show that total phosphorus (TP) is the best predictor for phytoplankton (as chl-a) at lower trophic levels, TP < 200 mg · m–3. A regression including both TP and TN as regressors is the best predictor for lakes with TP > 200 mg · m–3. However, the good correlation is probably due to a high correlation between lake average chl-a (all years observed) and lake average TP and TN. Within single hypereutrophic lakes, TN alone is the best predictor. It was not possible to identify a medium trophic domain where TN and TP in combination was the best predictor for chl-a. The ratio TN:TP in the water decreases from about 40 to about 5 with increasing trophic level. Optimum TN:TP ratio for algal species with high abundance during late summer and autumn reflects this decreasing ratio, but within a lesser range, i.e., 20 to 5. In contrast, TN:TP ratios for species abundant during the early vernal period showed no, or an inverse, relation to the TN:TP ratio of the water.  相似文献   
90.
Sediment cores from the shallow and deep basins of Pyramid Lake, Nevada, revealed variations in composition with depth reflecting changes in lake level, river inflow, and lake productivity. Recent sediments from the period of historical record indicate: (1) CaCO3 and organic content of sediment in the shallow basin decrease at lower lake level, (2) CaCO3 content of deep basin sediments increases when lake level decreases rapidly, and (3) the inorganic P content of sediments increases with decreasing lake volume. Variations in sediment composition also indicate several periods for which productivity in Pyramid Lake may have been elevated over the past 1000 years. Our data provide strong evidence for increased productivity during the first half of the 20th Century, although the typical pattern for cultural eutrophication was not observed. The organic content of sediments also suggests periods of increased productivity in the lake prior to the discovery and development of the region by white settlers. Indeed, a broad peak in organic fractions during the 1800's originates as an increase starting around 1600. However, periods of changing organic content of sediments also correspond to periods when inflow to the lake was probably at extremes (e.g. drought or flood) indicating that fluctuations in river inflow may be an important factor affecting sediment composition in Pyramid Lake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号