首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1933篇
  免费   405篇
  国内免费   251篇
测绘学   209篇
大气科学   137篇
地球物理   1008篇
地质学   650篇
海洋学   195篇
天文学   45篇
综合类   126篇
自然地理   219篇
  2024年   17篇
  2023年   18篇
  2022年   34篇
  2021年   96篇
  2020年   114篇
  2019年   82篇
  2018年   85篇
  2017年   93篇
  2016年   89篇
  2015年   88篇
  2014年   114篇
  2013年   179篇
  2012年   94篇
  2011年   110篇
  2010年   94篇
  2009年   88篇
  2008年   120篇
  2007年   123篇
  2006年   135篇
  2005年   87篇
  2004年   90篇
  2003年   97篇
  2002年   83篇
  2001年   54篇
  2000年   62篇
  1999年   48篇
  1998年   43篇
  1997年   56篇
  1996年   44篇
  1995年   19篇
  1994年   22篇
  1993年   25篇
  1992年   22篇
  1991年   9篇
  1990年   12篇
  1989年   10篇
  1988年   7篇
  1987年   8篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1971年   2篇
排序方式: 共有2589条查询结果,搜索用时 15 毫秒
101.
When formulating a hydrologic model, scientists rely on parameterizations of multiple processes based on field data, but literature review suggests that more frequently people select parameterizations that were included in pre-existing models rather than re-evaluating the underlying field experiments. Problems arise when limited field data exist, when “trusted” approaches do not get reevaluated, and when sensitivities fundamentally change in different environments. The physics and dynamics of snow interception by conifers is just such a case, and it is critical to simulation of the water budget and surface albedo. The most commonly used interception parameterization is based on data from four trees from one site, but results from this field study are not directly transferable to locations with relatively warmer winters, where the dominant processes differ dramatically. Here, we combine a literature review with model experiments to demonstrate needed improvements. Our results show that the choice of model form and parameters can vary the fraction of snow lost through interception by as much as 30%. In most simulations, the warming of mean winter temperatures from −7 to 0°C reduces the modelled fraction of snow under the canopy compared to the open, but the magnitude of simulated decrease varies from about 10% to 40%. The range of results is even larger when considering models that neglect the melting of in-canopy snow in higher-humidity environments where canopy sublimation plays less of a role. Thus, we recommend that all models represent canopy snowmelt and include representation of increased loading due to increased adhesion and cohesion when temperatures rise from −3 to 0°C. In addition to model improvements, field experiments across climates and forest types are needed to investigate how to best model the combination of dynamically changing forest cover and snow cover to better understand and predict changes to albedo and water supplies.  相似文献   
102.
Western disturbances (WDs) and Indian summer monsoon (ISM) led precipitation play a central role in the Himalayan water budget. Estimating their contributions to water resource is although a challenging but essential for hydrologic understanding and effective water resource management. In this study, we used stable water isotope data of precipitation and surface waters to estimate the contribution of ISM and WDs to the water resources in three mountainous river basins - Indus, Bhagirathi and Teesta river basins of western, central and Eastern Himalayas. The study reveals distinct seasonality in isotope characteristics of precipitation and surface waters in each river basin is due to changes in moisture source, hydrometeorology and relief. Despite steady spatial variance in the slope and intercept of regression lines from the Teesta to Indus and the Bhagirathi river basins, the slope and intercept are close to the global meteoric water line and reported local meteoric water line of other regions in the Himalayas and the Tibetan Plateau. The two-component end-member mixing method using d-excess as tracer were used to estimate the contribution from ISM and WD led precipitation to surface water in aforementioned river basins. The results suggest that the influence of the ISM on the water resources is high (>72% to annual river flow) in Teesta river basin (eastern Himalayas), while as the WDs led precipitation is dominantly contributing (>70% average annual river flow) to the surface waters in the Indus river basin (western Himalayas). The contribution of ISM and WD led precipitation in Bhagirathi river basin is 60% and 40%, respectively. The findings demonstrate that the unusual changes in the ISM and WD moisture dynamics have the potential to affect the economy and food security of the region, which is dependent on the availability of water resources. The obtained results are of assistance to policy makers/mangers to make use of the information for better understanding hydrologic response amid unusual behaviour of the dual monsoon system over the region.  相似文献   
103.
The understanding of nutrient uptake in streams is impeded by a limited understanding of how geomorphic setting and flow regime interact with biogeochemical processing. This study investigated these interactions as they relate to transient storage and nitrate uptake in small agricultural and urban streams. Sites were selected across a gradient of channel conditions and management modifications and included three 180‐m long geomorphically distinct reaches on each of two streams in north‐central Colorado. The agricultural stream has been subject to historically variable cattle‐grazing practices, and the urban stream exhibits various levels of stabilisation and planform alteration. Reach‐scale geomorphic complexity was characterised using highly detailed surveys of channel morphology, substrate, hydraulics and habitat units. Breakthrough‐curve modelling of conservative bromide (Br?) and nonconservative nitrate (NO3?) tracer injections characterised transient storage and nitrate uptake along each reach. Longitudinal roughness and flow depth were positively associated with transient storage, which was related to nitrate uptake, thus underscoring the importance of geomorphic influences on stream biogeochemical processes. In addition, changes in geomorphic characteristics due to temporal discharge variation led to complex responses in nitrate uptake. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
104.
This study delineated spatially and temporally variable runoff generation areas in the Sand Mountain region pasture of North Alabama under natural rainfall conditions, and demonstrated that hydrologic connectivity is important for generating hillslope response when infiltration‐excess (IE) runoff mechanism dominates. Data from six rainfall events (13·7–32·3 mm) on an intensively instrumented pasture hillslope (0·12 ha) were analysed. Analysis of data from surface runoff sensors, tipping bucket rain gauge and HS‐flume demonstrated spatial and temporal variability in runoff generation areas. Results showed that the maximum runoff generation area, which contributed to runoff at the outlet of the hillslope, varied between 67 and 100%. Furthermore, because IE was the main runoff generation mechanism on the hillslope, the data showed that as the rainfall intensity changed during a rainfall event, the runoff generation areas expanded or contracted. During rainfall events with high‐intensity short‐ to medium‐duration, 4–8% of total rainfall was converted to runoff at the outlet. Rainfall events with medium‐ to low‐intensity, medium‐duration were found less likely to generate runoff at the outlet. In situ soil hydraulic conductivity (k) was measured across the hillslope, which confirmed its effect on hydrologic connectivity of runoff generation areas. Combined surface runoff sensor and k‐interpolated data clearly showed that during a rainfall event, lower k areas generate runoff first, and then, depending on rainfall intensity, runoff at the outlet is generated by hydrologically connected areas. It was concluded that in IE‐runoff‐dominated areas, rainfall intensity and k can explain hydrologic response. The study demonstrated that only connected areas of low k values generate surface runoff during high‐intensity rainfall events. Identification of these areas would serve as an important foundation for controlling nonpoint source pollutant transport, especially phosphorus. The best management practices can be developed and implemented to reduce transport of phosphorus from these hydrologically connected areas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
105.
Abstract

Abstract The role of accuracy in the representation of infiltration on the effectiveness of real-time flood forecasting models was investigated. A simple semi-distributed model of conceptual type with adaptive estimate of hydraulic characteristics included in the infiltration component was selected. Infiltration was described by a very accurate approach recently formulated for complex rainfall patterns, or alternatively through a simpler formulation known as an extension of the classical time compression approximation. The results indicated that, for situations involving a significant rainfall variability in space, the inaccuracy in the representation of infiltration cannot be corrected by the adaptive component of the rainfall–runoff model. A preliminary analysis of the role of an approximation of saturated hydraulic conductivity to be used in each homogeneous area of the semi-distributed model used both in non-adaptive version and in real-time is also presented.  相似文献   
106.
This paper describes the hydrological changes caused by inter‐basin water transfer and the reservoir development on the hydrological regimes of two rivers. The Sabljaki Reservoir in the Zagorska Mre?nica River and the Bukovik Reservoir in the upper Dobra River began operation in 1959. Both are part of the hydroelectric power plant (HEPP) Gojak, whose installed capacity is 50 m3/s. Their water volumes at the spillway altitudes of 320·10 and 320·15 m a. s. l. are 3·3 × 106 and 0·24 × 106 m3 respectively. Both the Dobra and Mre?nica Rivers are losing, sinking and underground karst rivers. A 9376‐m‐long tunnel provides water from the Sabljaki Reservoir to the HEPP Gojak, which was constructed in the Lower Dobra River. The Sabljaki Reservoir is located in the Pla?ki karst polje, while the Bukovik Reservoir is located in the neighbouring Ogulin karst polje. The consequences of the inter‐basin water transfer are strong and have caused abrupt changes in the hydrological regimes of the downstream sections of both rivers. At the same time, the construction and development of both the reservoirs have also caused hydrological changes to the upstream section of the Upper Dobra River. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
107.
Stream temperature, an important measure of ecosystem health, is expected to be altered by future changes in climate and land use, potentially leading to shifts in habitat distribution for aquatic organisms dependent on particular temperature regimes. To assess the sensitivity of stream temperature to change in a region where such a shift has the potential to occur, we examine the variability of and controls on the direct relationship between air and water temperature across the state of Pennsylvania. We characterized the relationship between air and stream temperature via linear and nonlinear regression for 57 sites across Pennsylvania at daily and weekly timescales. Model fit (r2) improved for 92% (daily) and 65% (weekly) of sites for nonlinear versus linear relationships. Fit for weekly versus daily regression analysis improved by 0·08 for linear and 0·06 for nonlinear regression relationships. To investigate the mechanisms controlling stream temperature sensitivity to environmental change, we define ‘thermal sensitivity’ as the sensitivity of stream temperature of a given site to change in air temperature, quantified as the slope of the regression line between air and stream temperature. Air temperature accounted for 60–95% of the daily variation in stream temperature for sites at or above a Strahler stream order (SO) of 3, with thermal sensitivities ranging from low (0·02) to high (0·93). The sensitivity of stream temperature to air temperature is primarily controlled by stream size (SO) and baseflow contribution. Together, SO and baseflow index explained 43% of the variance in thermal sensitivity across the state, and 59% within the Susquehanna River Basin. In small streams, baseflow contribution was the major determinant of thermal sensitivity, with increasing baseflow contributions resulting in decreasing sensitivity values. In large streams, thermal sensitivity increased with stream size, as a function of accumulated heat throughout the stream network. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
108.
Grotta di Ernesto is a cave site well suited for palaeoclimate studies because it contains annually laminated stalagmites and was monitored from 1995 to the end of 2008 for microclimate, hydrology and hydrochemistry. Long‐term monitoring highlighted that cave drips show three different hydrological responses to rainfall and infiltration: (1) fast seasonal drips in the upper part of the cave, which are mostly fed by fractures, (2) slow seasonal drips, located at mid‐depth in the cave characterized by mixed feeding and (3) slow drips, mostly located in the deeper gallery, which are fed by seepage flow from bulk porosity with a minor fracture‐fed component. The slow drips display daily cycles during spring thaw. Monitoring also indicated that drip waters are only slightly modified by degassing within the soil zone and aquifer and by prior calcite precipitation. Hydrochemical studies show a clear seasonality in calcite saturation index, which results in most cave calcite precipitation occurring during late autumn and winter with similar amounts of precipitated calcite on most stalagmites, regardless of drip rate (discharge) differences. Drip rate, and drip rate variability, therefore, has a minor role in modulating the amount of annual calcite formation. In contrast, drip rate, when associated with moderate reduction in calcite saturation index, clearly influences stalagmite morphology. Increasing drip rate yields a passage from candle‐, to cone‐ to dome‐shaped stalagmites. Very high drip rates feed speleothems with flowstone morphology. In summary, monitoring provides information about the karst aquifer and how hydrology influences those physical and chemical characteristics of speleothems which are commonly used as climate proxies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
109.
A riparian ecosystem downstream of a small dam in central Texas was instrumented for sap flow, soil moisture content, and stream level from 2001. Stable isotopes in water (D and 18O) were analysed from rainfall, stream, lake, and cored sapwood cellulose from cedar elm (Ulmus crassifolia). The isotope signature of water source to cedar elm was identified by back calculation starting with the water isotopes in cellulose, and accounting for leaf‐water evaporation and biological fractionation during cellulose synthesis. The estimated mean isotope of the source water to cedar elm was enriched above rainfall in similarity to stream water during 2002. Flow paths that may have contributed to estimated variability from regional base flow and recharge water were identified using the variably saturated HYDRUS‐2D model. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
110.
Basin landscapes possess an identifiable spatial structure, fashioned by climate, geology and land use, that affects their hydrologic response. This structure defines a basin's hydrogeological signature and corresponding patterns of runoff and stream chemistry. Interpreting this signature expresses a fundamental understanding of basin hydrology in terms of the dominant hydrologic components: surface, interflow and groundwater runoff. Using spatial analysis techniques, spatially distributed watershed characteristics and measurements of rainfall and runoff, we present an approach for modelling basin hydrology that integrates hydrogeological interpretation and hydrologic response unit concepts, applicable to both new and existing rainfall‐runoff models. The benefits of our modelling approach are a clearly defined distribution of dominant runoff form and behaviour, which is useful for interpreting functions of runoff in the recruitment and transport of sediment and other contaminants, and limited over‐parameterization. Our methods are illustrated in a case study focused on four watersheds (24 to 50 km2) draining the southern coast of California for the period October 1988 though to September 2002. Based on our hydrogeological interpretation, we present a new rainfall‐runoff model developed to simulate both surface and subsurface runoff, where surface runoff is from either urban or rural surfaces and subsurface runoff is either interflow from steep shallow soils or groundwater from bedrock and coarse‐textured fan deposits. Our assertions and model results are supported using streamflow data from seven US Geological Survey stream gauges and measured stream silica concentrations from two Santa Barbara Channel–Long Term Ecological Research Project sampling sites. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号