首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1671篇
  免费   412篇
  国内免费   171篇
测绘学   203篇
大气科学   238篇
地球物理   824篇
地质学   536篇
海洋学   90篇
天文学   5篇
综合类   81篇
自然地理   277篇
  2024年   5篇
  2023年   10篇
  2022年   36篇
  2021年   87篇
  2020年   116篇
  2019年   79篇
  2018年   104篇
  2017年   122篇
  2016年   100篇
  2015年   115篇
  2014年   130篇
  2013年   260篇
  2012年   115篇
  2011年   101篇
  2010年   75篇
  2009年   88篇
  2008年   88篇
  2007年   69篇
  2006年   80篇
  2005年   64篇
  2004年   65篇
  2003年   44篇
  2002年   54篇
  2001年   49篇
  2000年   29篇
  1999年   42篇
  1998年   24篇
  1997年   28篇
  1996年   21篇
  1995年   14篇
  1994年   6篇
  1993年   10篇
  1992年   4篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
排序方式: 共有2254条查询结果,搜索用时 15 毫秒
81.
The study of runoff is a crucial issue because it is closely related to flooding, water quality and erosion. In cultivated catchments, agricultural ditch drainage networks are known to influence runoff. As anthropogenic elements, agricultural ditch drainage networks can therefore be altered to better manage surface runoff in cultivated catchments. However, the relationship between the spatial configuration, i.e. the density and the topology, of agricultural ditch drainage networks and surface runoff in cultivated catchments is not understood. We studied this relationship by using a random network simulator that was coupled to a distributed hydrological model. The simulations explored a large variety of spatial configurations corresponding to a thousand stochastic agricultural ditch drainage networks on a 6.4 km² Mediterranean cultivated catchment. Next, several distributed hydrological functions were used to compute water flow paths and runoff for each simulation. The results showed that (i) denser networks increased the drained volume and the peak discharge and decreased hillslopes runoff, (ii) greater network density did not affect the surface runoff any further above a given network density, (iii) the correlation between network density and runoff was weaker for small subcatchments (< 2 km²) where the variability in the drained area that resulted from changes in agricultural ditch drainage networks increased the variability of runoff and (iv) the actual agricultural ditch drainage network appeared to be well optimized for managing runoff as compared with the simulated networks. Finally, our results highlighted the role of agricultural ditch drainage networks in intercepting and decreasing overland flow on hillslopes and increasing runoff in drainage networks. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
82.
A. Montenegro  R. Ragab 《水文研究》2010,24(19):2705-2723
Brazilian semi‐arid regions are characterized by water scarcity, vulnerability to desertification, and climate variability. The investigation of hydrological processes in this region is of major interest not only for water planning strategies but also to address the possible impact of future climate and land‐use changes on water resources. A hydrological distributed catchment‐scale model (DiCaSM) has been applied to simulate hydrological processes in a small representative catchment of the Brazilian northeast semi‐arid region, and also to investigate the impact of climate and land‐use changes, as well as changes associated with biofuel/energy crops production. The catchment is part of the Brazilian network for semi‐arid hydrology, established by the Brazilian Federal Government. Estimating and modelling streamflow (STF) and recharge in semi‐arid areas is a challenging task, mainly because of limitation in in situ measurements, and also due to the local nature of some processes. Direct recharge measurements are very difficult in semi‐arid catchments and contain a high level of uncertainty. The latter is usually addressed by short‐ and long‐time‐scale calibration and validation at catchment scale, as well as by examining the model sensitivity to the physical parameters responsible for the recharge. The DiCaSM model was run from 2000 to 2008, and streamflow was successfully simulated, with a Nash–Sutcliffe (NS) efficiency coefficient of 0·73, and R2 of 0·79. On the basis of a range of climate change scenarios for the region, the DiCaSM model forecasted a reduction by 35%, 68%, and 77%, in groundwater recharge (GWR), and by 34%, 65%, and 72%, in streamflow, for the time spans 2010–2039, 2040–2069, and 2070–2099, respectively, could take place for a dry future climate scenario. These reductions would produce severe impact on water availability in the region. Introducing castor beans to the catchment would increase the GWR and streamflow, mainly if the caatinga areas would be converted into castor beans production. Changing an area of 1000 ha from caatinga to castor beans would increase the GWR by 46% and streamflow by 3%. If the same area of pasture is converted into castor beans, there would be an increase in GWR and streamflow by 24% and 5%, respectively. Such results are expected to contribute towards environmental policies for north‐east Brazil (NEB), and to biofuel production perspectives in the region. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
83.
Understanding the impacts of land‐use changes on hydrology at the watershed scale can facilitate development of sustainable water resource strategies. This paper investigates the hydrological effects of land‐use change in Zanjanrood basin, Iran. The water balance was simulated using the Soil and Water Assessment Tool (AVSWAT2000). Model calibration and uncertainty analysis were performed with sequential uncertainty fitting (SUFI‐2). Simulation results from January 1998 to December 2002 were used for parameter calibration, and then the model was validated for the period of January 2003 to December 2004. The predicted monthly streamflow matched the observed values: during calibration the correlation coefficient was 0·86 and the Nash–Sutcliffe coefficient 0·79, compared with 0·80 and 0·79, respectively, during validation. The model was used to simulate the main components of the hydrological cycle, in order to study the effects of land‐use changes in 1967, 1994 and 2007. The study reveals that during 1967 a 34·5% decrease of grassland with concurrent increases of shrubland (13·9%), rain‐fed agriculture (12·1%), bare ground (5·5%) irrigated agriculture (2·2%), and urban area (0·7%) led to a 33% increase in the amount of surface runoff and a 22% decrease in the groundwater recharge. Furthermore, the area of sub‐basins that was influenced by high runoff (14–28 mm) increased. The results indicate that the hydrological response to overgrazing and the replacing of rangelands (grassland and shrubland) with rain‐fed agriculture and bare ground (badlands) is nonlinear and exhibits a threshold effect. The runoff rises dramatically when more than 60% of the rangeland is removed. For groundwater this threshold lies at an 80% decrease in rangeland. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
84.
Abstract

Knowledge of the hydrochemical dynamics of the trace metal manganese (Mn) in upland catchments is required for water quality management. Stream water Mn and other solutes and flow were monitored in two upland catchments in northern England with different soils: one dominated by peat (HS7), the other by mineral soils (HS4). Maximum Mn concentrations occurred at different times in the two catchments: in summer baseflow at HS4 and during late summer storm events at HS7. A two-component chemical mixing model was used to identify the hydrological processes controlling Mn concentrations in stream water. This approach was more successful for HS4 than HS7, probably because of different processes of Mn release in the two catchments and also difficulties in selecting conservative solutes. Factor analysis of the stream water chemistry data set for each catchment was more useful in identifying the controls on Mn release into runoff. The factors indicate that the main source of Mn at HS4 is the hydrological pathway supplying summer baseflow, whereas at HS7 Mn is released during the rewetting of dried peat soils. Manganese concentrations in stream water in upland catchments appear to depend on soil type and antecedent moisture conditions. This has implications for the design of sampling strategies in upland catchments and also for managing the quality of water supplies from such areas.  相似文献   
85.
Abstract

The well-established physical and mathematical principle of maximum entropy (ME), is used to explain the distributional and autocorrelation properties of hydrological processes, including the scaling behaviour both in state and in time. In this context, maximum entropy is interpreted as maximum uncertainty. The conditions used for the maximization of entropy are as simple as possible, i.e. that hydrological processes are non-negative with specified coefficients of variation (CV) and lag one autocorrelation. In this first part of the study, the marginal distributional properties of hydrological variables and the state scaling behaviour are investigated. Application of the ME principle under these very simple conditions results in the truncated normal distribution for small values of CV and in a nonexponential type (Pareto) distribution for high values of CV. In addition, the normal and the exponential distributions appear as limiting cases of these two distributions. Testing of these theoretical results with numerous hydrological data sets on several scales validates the applicability of the ME principle, thus emphasizing the dominance of uncertainty in hydrological processes. Both theoretical and empirical results show that the state scaling is only an approximation for the high return periods, which is merely valid when processes have high variation on small time scales. In other cases the normal distributional behaviour, which does not have state scaling properties, is a more appropriate approximation. Interestingly however, as discussed in the second part of the study, the normal distribution combined with positive autocorrelation of a process, results in time scaling behaviour due to the ME principle.  相似文献   
86.
Planting of sand‐binding vegetation in the Shapotou region on the southeastern edge of the Tengger Desert began in 1956. The revegetation programme successfully stabilized formerly mobile dunes in northern China, permitting the operation of the Baotou‐Lanzhou railway. Long‐term monitoring has shown that the revegetation programme produced various ecological changes, including the formation of biological soil crusts (BSCs). To gain insight into the role of BSCs in both past ecological change and current ecological evolution at the revegetation sites, we used field measurements and HYDRUS‐1D model simulations to investigate the effects of BSCs on soil hydrological processes at revegetated sites planted in 1956 and 1964 and at an unplanted mobile dune site. The results demonstrate that the formation of BSCs has altered patterns of soil water storage, increasing the moisture content near the surface (0–5 cm) while decreasing the moisture content in deeper layers (5–120 cm). Soil evaporation at BSC sites is elevated relative to unplanted sites during periods when canopy coverage is low. Rainfall infiltration was not affected by BSCs during the very dry period that was studied (30 April to 30 September 2005); during periods with higher rainfall intensity, differences in infiltration may be expected due to runoff at BSC sites. The simulated changes in soil moisture storage and hydrological processes are consistent with ongoing plant community succession at the revegetated sites, from deep‐rooted shrubs to more shallow‐rooted herbaceous species. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
87.
Seasonal hydrological forecasts, or outlooks, can potentially provide water managers with estimates of river flows and water resources for a lead time of several months ahead. An experimental modelling tool for national hydrological outlooks has been developed which combines a hydrological model estimate of sub‐surface water storage across Britain with a range of seasonal rainfall forecasts to provide estimates of area‐wide hydrological conditions up to a few months ahead. The link is made between a deficit in sub‐surface water storage and a requirement for additional rainfall over subsequent months to enable sub‐surface water storage and river flow to return to mean monthly values. The new scheme is assessed over a recent period which includes the termination of the drought that affected much of Britain in the first few months of 2012. An illustration is provided of its use to obtain return‐period estimates of the ‘rainfall required’ to ease drought conditions; these are well in excess of 200 years for several regions of the country, for termination within a month of 1 April 2012, and still exceed 40 years for termination within three months. National maps of sub‐surface water storage anomaly show for the first time the current spatial variability of drought severity. They can also be used to provide an indication of how a drought situation might develop in the next few months given a range of possible future rainfall scenarios. © 2013 CEH/Crown and John Wiley & Sons, Ltd.  相似文献   
88.
本文用模糊贴近度原则作类比,提供了一种弥补震害预测时历史地震资料不足的方法,途径是将一个烈度之下的震害经验推广到其他烈度上去用。实践证明,用这种建立在近似推理基础之上的方法推导出来的结果,在总体趋势上和真实情况完全一致。  相似文献   
89.
用修改欧氏距离和马氏距离,分析了豫西山区不同海拔与河北省承德地区,全国闻名的良种繁育基地玉米制种的农业气候相似性.确定了与承德地区相似的玉米制种海拔界限为334-1215m.其中海拔500m以上农业气候条件更为适宜.  相似文献   
90.
三峡地区水资源评价   总被引:1,自引:0,他引:1  
赵海瑞  储开凤 《水文》1995,(3):12-19
在大量水文资料统计分析的基础上,对三峡地区主要水文要素的时空分布及变化特征、分区水资源的评价和开发利用条件进行了系统分析,可为三峡工程建设提供该地区社会经济发展的科学依据和基本的水文水资源数据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号