首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   51篇
  国内免费   87篇
测绘学   1篇
大气科学   1篇
地球物理   77篇
地质学   259篇
海洋学   16篇
天文学   1篇
综合类   8篇
自然地理   4篇
  2024年   3篇
  2023年   1篇
  2022年   3篇
  2021年   13篇
  2020年   12篇
  2019年   15篇
  2018年   6篇
  2017年   9篇
  2016年   12篇
  2015年   9篇
  2014年   11篇
  2013年   20篇
  2012年   10篇
  2011年   12篇
  2010年   12篇
  2009年   22篇
  2008年   15篇
  2007年   17篇
  2006年   17篇
  2005年   12篇
  2004年   15篇
  2003年   10篇
  2002年   11篇
  2001年   17篇
  2000年   15篇
  1999年   13篇
  1998年   8篇
  1997年   8篇
  1996年   7篇
  1995年   11篇
  1994年   3篇
  1993年   5篇
  1992年   6篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1985年   1篇
  1983年   1篇
  1954年   1篇
排序方式: 共有367条查询结果,搜索用时 343 毫秒
81.
Harutaka  Sakai  Minoru  Sawada  Yutaka  Takigami  Yuji  Orihashi  Tohru  Danhara  Hideki  Iwano  Yoshihiro  Kuwahara  Qi  Dong  Huawei  Cai  Jianguo  Li 《Island Arc》2005,14(4):297-310
Abstract   Newly discovered peloidal limestone from the summit of Mount Qomolangma (Mount Everest) contains skeletal fragments of trilobites, ostracods and crinoids. They are small pebble-sized debris interbedded in micritic bedded limestone of the Qomolangma Formation, and are interpreted to have been derived from a bank margin and redeposited in peri-platform environments. An exposure of the Qomolangma detachment at the base of the first step (8520 m), on the northern slope of Mount Qomolangma was also found. Non-metamorphosed, strongly fractured Ordovician limestone is separated from underlying metamorphosed Yellow Band by a sharp fault with a breccia zone. The 40Ar–39Ar ages of muscovite from the Yellow Band show two-phase metamorphic events of approximately 33.3 and 24.5 Ma. The older age represents the peak of a Barrovian-type Eo-Himalayan metamorphic event and the younger age records a decompressional high-temperature Neo-Himalayan metamorphic event. A muscovite whole-rock 87Rb–86Sr isochron of the Yellow Band yielded 40.06 ± 0.81 Ma, which suggests a Pre-Himalayan metamorphism, probably caused by tectonic stacking of the Tibetan Tethys sediments in the leading margin of the Indian subcontinent. Zircon and apatite grains, separated from the Yellow Band, gave pooled fission-track ages of 14.4 ± 0.9 and 14.4 ± 1.4 Ma, respectively. These new chronologic data indicate rapid cooling of the hanging wall of the Qomolangma detachment from approximately 350°C to 130°C during a short period (15.5–14.4 Ma).  相似文献   
82.
SW Iberia is interpreted as an accretionary magmatic belt resulting from the collision between the South Portuguese Zone and the autochthonous Iberian terrane in Variscan times (350 to 330 Ma). In the South Portuguese Zone, pull-apart basins were filled with a thick sequence of siliciclastic sediments and bimodal volcanic rocks that host the giant massive sulphides of the Iberian Pyrite Belt. Massive sulphides precipitated in highly efficient geochemical traps where metal-rich but sulphur-depleted fluids of dominant basinal derivation mixed with sulphide-rich modified seawater. Massive sulphides formed either in porous/reactive volcanic rocks by sub-seafloor replacement, or in dark shale by replacement of mud or by exhalation within confined basins with high biogenic activity. Crustal thinning and magma intrusion were responsible for thermal maturation and dehydration of sedimentary rocks, while magmatic fluids probably had a minor influence on the observed geochemical signatures.The Ossa Morena Zone was a coeval calc-alkaline magmatic arc. It was the site for unusual mineralization, particularly magmatic Ni–(Cu) and hydrothermal Fe-oxide–Cu–Au ores (IOCG). Most magmatism and mineralization took place at local extensional zones along first-order strike-slip faults and thrusts. The source of magmas and IOCG and Ni–(Cu) deposits probably lay in a large mafic–ultramafic layered complex intruded along a detachment at the boundary between the upper and lower crust. Here, juvenile melts extensively interacted with low-grade metamorphic rocks, inducing widespread anatexis, magma contamination and further exsolution of hydrothermal fluids. Hypersaline fluids (δ18Ofluid > 5.4‰ to 12‰) were focused upward into thrusts and faults, leading to early magnetite mineralization associated with a high-temperature (> 500 °C) albite–actinolite–salite alteration and subsequent copper–gold-bearing vein mineralization at somewhat lower temperatures. Assimilation of sediments by magmas led in turn to the formation of immiscible sulphide and silicate melts that accumulated in the footwall of the layered igneous complex. Further injection of both basic and sulphide-rich magmas into the upper crust led to the formation of Ni–(Cu)-rich breccia pipes.Younger (330 to 280 Ma?) peraluminous granitoids probably reflect the slow ascent of relatively dry and viscous magmas formed by contact anatexis. These granitoids have W–(Sn)- and Pb–Zn-related mineralization that also shows geochemical evidence of major mantle–crust interaction. Late epithermal Hg–(Cu–Sb) and Pb–Zn–(Ag) mineralization was driven by convective hydrothermal cells resulting from the high geothermal gradients that were set up in the zone by intrusion of the layered igneous complex. In all cases, most of the sulphur seems to have been derived from leaching of the host sedimentary rocks (δ34S = 7‰ to 20‰) with only limited mixing with sulphur of magmatic derivation.The metallogenic characteristics of the two terranes are quite different. In the Ossa Morena Zone, juvenile magmatism played a major role as the source of metals, and controlled the styles of mineralization. In the South Portuguese Zone, magmas only acted as heat sources but seem to have had no major influence as sources of metals and fluids, which are dominated by crustal signatures. Most of the magmatic and tectonic features related to the Variscan subduction and collision seem to be masked by those resulting from transpressional deformation and deep mafic intrusion, which led to the development of a metallogenic belt with little resemblance to other accretionary magmatic arcs.  相似文献   
83.
库车前陆褶皱冲断带前缘滑脱层内部变形特征   总被引:4,自引:2,他引:4       下载免费PDF全文
古近系库姆格列木组和新近系吉迪克组膏盐层构成了库车前陆褶皱冲断带的区域滑脱层。在褶皱冲断带前缘,膏盐层发生塑性流动,其内部形成多种构造样式。根据野外考察、地震剖面解释和钻井资料识别出的膏盐层内部构造变形样式主要包括盐枕、盐墙、盐推覆、鱼尾构造、盐焊接(断层焊接)、盐缩颈、透镜状增厚和盐垛等盐构造。盐构造在形成时间上具有一定的演化序列,库车前陆褶皱冲断带总体表现为由北向南迁移,前缘秋里塔格构造带则是从西往东迁移,盐推覆、盐焊接、盐枕等构造形成时间较早,盐墙形成较晚,东秋地区的盐构造形成时间整体较西段和中段晚,规模也较小。  相似文献   
84.
新汶矿区多层次滑脱构造   总被引:9,自引:2,他引:7  
岩石圈内部存在着多层次拆离滑脱现象,主要由伸展作用形成的矿区边界铲状正断层交汇于深层次滑脱构造面上,而浅层次滑脱构造主要是在地壳伸展之后重力滑动作用的结果。这些多层次滑脱构造是新汶矿区构造格局形成的最主要因素。  相似文献   
85.
福建蒲洋变质核杂岩构造及其控矿作用初探   总被引:4,自引:0,他引:4  
陈柏林  吴淦国 《福建地质》1998,17(3):139-146
蒲洋变质核杂岩属古大陆边缘型,由变质杂岩核和基底滑脱剥离带组成,因后期构造破坏,褶叠层和未变质盖层出露不齐全,变质杂岩核为加里东期-印支期的中酸性侵入岩,具片麻状构造;基底滑脱剥离带发育于中元古界麻源群变质岩中,具片麻状构造,并在此基础眼育了中浅层次低角度正断层系,肖坂地区金矿床采变质核杂岩生成演化的控制,近核部陡倾角断裂控制石英脉型金矿床,西北侧低角度正断层控制构造蚀变岩金矿床,从构造控矿角度分  相似文献   
86.
湖南双峰紫云山隆起区金矿成矿机制探讨   总被引:2,自引:0,他引:2  
戚学祥 《黄金地质》1998,4(1):50-56
湖南双紫云山隆起区金矿受剥离断层控制,矿质主要来源于岩浆热液。成矿作用过程中,剥离断层带深部和浅部分别形成深部含矿岩浆热液循环系统和地下水热液循环系统,两热液系统在空间上的交汇处矿质沉淀、富集形成金矿化体。  相似文献   
87.
小秦岭金矿田矿床成因新认识   总被引:9,自引:0,他引:9  
通过对东闯特大型金矿床的重点研究,综合前人资料,对小秦岭金矿田矿床成因提出了新的认识。成矿流体由地幔流体交代演化而来,成矿物质主要来自上地幔和下地壳,成矿时代为晚燕山期,不同形式的拆离构造为成矿流体提供了运移通道和富集空间,其成因类型为幔源中高温热液金矿床。  相似文献   
88.
藏南深反射测线附近地表地质观察研究成果   总被引:3,自引:0,他引:3  
本文简要介绍了INDEPTH项目地质组1994年和1995年间沿INDEPTH—I路线进行的野外填图工作的初步研究成果。它们是:①在帕里西北确定了高喜马拉雅与特提斯喜马拉雅之间拆离带的存在;③在帕里北发现了一套特提斯沉积,从而提出帕里西北的拆离带有可能穿过南北方向的亚东-谷露裂谷,而没有大规模错开;③在特提斯喜马拉雅带中确定了两条具一定规模的逆冲断裂;④发现康马穹窿存在两期构造变形,早期为上盘向北运动,晚期为横弯造穹作用。最后,结合深反射资料进一步讨论了康马穹窿与藏南拆离带之间的关系。  相似文献   
89.
Soil loss continues to threaten Java's predominantly bench‐terraced volcanic uplands. Sediment transport processes on back‐sloping terraces with well‐aggregated clay‐rich oxisols in West Java were studied using two different techniques. Splash on bare, cropped, or mulched sub‐horizontal (2–3°) terrace beds was studied using splash cups of different sizes, whereas transport of sediment on the predominantly bare and steep (30–40/deg ) terrace risers was measured using a novel device combining a Gerlach‐type trough with a splash box to enable the separate measurement of transport by wash and splash processes. Measurements were made during two consecutive rainy seasons. The results were interpreted using a recently developed splash distribution theory and related to effective rainfall erosive energy. Splash transportability (i.e. transport per unit contour length and unit erosive energy) on the terrace risers was more than an order of magnitude greater than on bare terrace beds (0·39–0·57 versus 0·013–0·016 g m J?1). This was caused primarily by a greater average splash distance on the short, steep risers (>11 cm versus c. 1 cm on the beds). Splashed amounts were reduced by the gradual formation of a protective ‘pavement’ of coarser aggregates, in particular on the terrace beds. Soil aggregate size exhibited an inverse relationship with detachability (i.e. detachment per unit area and unit erosive energy) and average splash length, and therefore also with transportability, as did the degree of canopy and mulch cover. On the terrace risers, splash‐creep and gravitational processes transported an additional 6–50% of measured rain splash, whereas transport by wash played a marginal role. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
90.
Abstract. The Liwu Cu‐rich sulfide deposit occurs within the Jianglang dome in the eastern margin of the Tibetan plateau. The dome consists of a core, a middle slab and a cover sequence. The main deposit is hosted in the core with minor ore bodies in the middle slab. The protolith of the core consists of clastic sedimentary rocks with inter‐layered volcanic rocks. All of the ore bodies are substantially controlled by an extensional detachment fault system. The ore bodies within the core are distributed along the S2 foliation in the hinge of recumbent fold (D2), whereas ore bodies with en echelon arrangement are controlled by the mylonitic foliation of the lower detachment fault. Ore bodies within the middle slab are oriented with their axes parallel to the mylonitic foliation. Pyrite and pyrrhotite from the ores contain Co ranging from 37 to 1985 ppm, Ni from 2.5 to 28.1 ppm, and Co/Ni ratios from 5 to 71. These sulfides have δ34S values ranging from 1.5 to 7.5 % whereas quartz separates have δ18O values of 11.9 and 14.3 % and inclusion fluid in quartz has δD value of‐88.1 %. These features suggest that the deposit was of hydrothermal origin. Two ore‐forming stages are recognized in the evolution of the Jianglang dome. (1) A low‐temperature ore‐forming process, during the tectonic transport of the upper plate above the lower detachment, and the initial phase of the footwall updom‐ing at 192–177 Ma. (2) A medium‐temperature ore‐forming stage, related to the final structural development of the initial detachment at 131–81Ma. Within the core, the ore bodies of the first stage were uplifted to, or near, the brittle/ductile horizon where the ore‐forming metals were re‐concentrated and enriched. A denudation stage in which a compressional tectonic event produced eastward thrusting overprinted the previous structures, and finally denuded the deposit. The Liwu Cu‐rich sulfide deposit was formed during a regional extensional tectonic event and is defined as a tectono‐strata‐bound hydrothermal ore deposit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号