首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   718篇
  免费   146篇
  国内免费   332篇
测绘学   85篇
大气科学   5篇
地球物理   313篇
地质学   674篇
海洋学   29篇
天文学   1篇
综合类   44篇
自然地理   45篇
  2024年   3篇
  2023年   4篇
  2022年   15篇
  2021年   34篇
  2020年   31篇
  2019年   39篇
  2018年   27篇
  2017年   31篇
  2016年   32篇
  2015年   52篇
  2014年   62篇
  2013年   59篇
  2012年   53篇
  2011年   64篇
  2010年   51篇
  2009年   75篇
  2008年   80篇
  2007年   79篇
  2006年   86篇
  2005年   57篇
  2004年   50篇
  2003年   54篇
  2002年   21篇
  2001年   20篇
  2000年   18篇
  1999年   19篇
  1998年   22篇
  1997年   14篇
  1996年   14篇
  1995年   5篇
  1994年   6篇
  1993年   5篇
  1992年   1篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
排序方式: 共有1196条查询结果,搜索用时 15 毫秒
91.
Homogeneous earth dams that are waterproofed with geomembranes are a suitable option for storing water and other sorts of liquids, like leachates from landfills. Such dams do not require complicated engineering technical calculations, their cost is usually low and they are not difficult to construct. To ensure the geotechnical safety of the dam, the slopes of the embankment must be correctly designed and constructed. This paper provides a set of nomograms which allow the user to get the safety factor of the slopes immediately. In some cases, it is only necessary to know previously the material classification according to the Unified Soil Classifications System. From this information it can be determined whether the material is appropriate or not. If the material classification is not available, geotechnical data of the material used in the construction of the embankment are needed. Examples of the application of nomograms are presented. Secondly, the paper includes a set of equations to calculate quickly the safety factor of a slope of earth upper than 7.5 m height.  相似文献   
92.
In this study, we captured how a river channel responds to a sediment pulse originating from a dam removal using multiple lines of evidence derived from streamflow gages along the Patapsco River, Maryland, USA. Gages captured characteristics of the sediment pulse, including travel times of its leading edge (~7.8 km yr−1) and peak (~2.6 km yr−1) and suggest both translation and increasing dispersion. The pulse also changed local hydraulics and energy conditions, increasing flow velocities and Froude number, due to bed fining, homogenization and/or slope adjustment. Immediately downstream of the dam, recovery to pre-pulse conditions occurred within the year, but farther downstream recovery was slower, with the tail of the sediment pulse working through the lower river by the end of the study 7 years later. The patterns and timing of channel change associated with the sediment pulse were not driven by large flow or suspended sediment-transporting events, with change mostly occurring during lower flows. This suggests pulse mobility was controlled by process-factors largely independent of high flow. In contrast, persistent changes occurred to out-of-channel flooding dynamics. Stage associated with flooding increased during the arrival of the sediment pulse, 1 to 2 years after dam removal, suggesting persistent sediment deposition at the channel margins and nearby floodplain. This resulted in National Weather Service-indicated flood stages being attained by 3–43% smaller discharges compared to earlier in the study period. This study captured a two-signal response from the sediment pulse: (1) short- to medium-term (weeks to months) translation and dispersion within the channel, resulting in aggradation and recovery of bed elevations and changing local hydraulics; and (2) dispersion and persistent longer-term (years) effects of sediment deposition on overbank surfaces. This study further demonstrated the utility of US Geological Survey gage data to quantify geomorphic change, increase temporal resolution, and provide insights into trajectories of change over varying spatial and temporal scales.  相似文献   
93.
The hydrogeomorphology of the Vietnamese Mekong Delta (VMD) has been significantly altered by natural and anthropogenic drivers. In this study, the spatiotemporal changes of the flow regime were examined by analysing the long-term daily, monthly, annual and extreme discharges and water levels from 1980 to 2018, supported by further investigation of the long-term annual sediment load (from the 1960s to 2015), river bathymetric data (in 1998, 2014 and 2017) and daily salinity concentration (from the 1990s to 2015) using various statistical methods and a coupled numerical model. Then, the effects of riverbed incision on the hydrology were investigated. The results show that the dry season discharge (i.e., in March–June) of the Tien River increased by up to 23% from the predam period (1980–1992) to the postdam period (1993–2018) but that the dry season water level at My Thuan decreased by up to −46%. The annual mean and monthly water levels in June at Tan Chau and in January and June–October at My Thuan in the Tien River decreased statistically, even though the respective discharges increased significantly. These decreased water levels instead of the increased discharges were attributed to the accelerated riverbed incision upstream from My Thuan, which increased by more than three times, from a mean rate of −0.16 m/year (−16.7 Mm3/year) in 1998–2014 to −0.5 m/year (−52.5 Mm3/year) in 2014–2017. This accelerated riverbed incision was likely caused by the reduction in the sediment load of the VMD (from 166.7 Mt/year in the predam period to 57.6 Mt/year in the postdam period) and increase in sand mining (from 3.9 Mm3 in 2012 to 13.43 Mm3 in 2018). Collectively, the decreased dry season water level in the Tien River is likely one of the main causes of the enhanced salinity intrusion.  相似文献   
94.
Risk analysis for clustered check dams due to heavy rainfall   总被引:7,自引:1,他引:6  
Check dams are commonly constructed around the world for alleviating soil erosion and preventing sedimentation of downstream rivers and reservoirs.Check dams are more vulnerable to failure due to their less stringent flood control standards compared to other dams.Determining the critical precipitation that will result in overtopping of a dam is a useful approach to assessing the risk of failure on a probabilistic basis and for providing early warning in case of an emergency.However,many check dams are built in groups,spreading in several tributaries in cascade forms,comprising a complex network.Determining the critical precipitation for dam overtopping requires a knowledge of its upstream dams on whether they survived or were overtopped during the same storm,while these upstream dams in turn need the information for their upstream dams.The current paper presents an approach of decomposing the dam cluster into(1)the heading dam,(2)border dams,and(3)intermediate dams.The algorithm begins with the border dams that have no upstream dams and proceeds with upgraded maps without the previous border dams until all the dams have been checked.It is believed that this approach is applicable for small-scale check dam systems where the time lag of flood routing can be neglected.As a pilot study,the current paper presents the analytical results for the Wangmaogou Check Dam System that has 22 dams connected in series and parallel.The algorithm clearly identified 7 surviving dams,with the remaining ones being overtopped for a storm of 179.6 mm in 12 h,which is associated with a return period of one in 200 years.  相似文献   
95.
面向对象的土石坝参数随机反演程序设计   总被引:2,自引:1,他引:1  
采用面向对象的软件PowerBuilder作为开发平台 ,运用动态链接库的原理 ,建立了一套面向对象的反演分析法 ,定义了对象类之间的关系 ,确立了有限元的消息流 ,使程序的界面更加友好 ,程序操作更为直观。并针对岩土工程反分析中使用的传统贝叶斯法中存在的缺陷 ,提出了扩展贝叶斯法 ,从概率论和数理统计的原理出发 ,建立了基于决策信息论中AIC准则和最大熵准则的岩土工程随机反演的准则函数。所建立的计算模型和分析方法 ,通过了数值算例的验证 ,从而也表明本文提出的模型和分析方法基础可靠、仿真性强 ,具有广阔的应用前景  相似文献   
96.
97.
王家全  徐良杰  黄世斌  刘政权 《岩土力学》2019,40(11):4220-4228
为研究加筋土桥台结构在顶部条基动载作用下的动力响应问题,通过MTS伺服加载系统施加循环动载,开展室内加筋桥台挡墙动载破坏试验,对比分析3种格栅长度和3类格栅型式的加筋土挡墙沉降及面板水平位移、土压力、筋材应变等参数的分布规律,揭示加筋桥台挡墙的动力承载性能。试验结果表明:在循环动载下不同格栅长度及型式的加筋桥台挡墙破坏模式存在差异,M、A、B型格栅加筋长度 1.0H(H为挡墙高)的挡墙破坏模式均为冲切剪切破坏,A、B型格栅 0.7H和 0.4H的挡墙破坏模式为局部剪切破坏。加筋桥台挡墙面板侧移随筋材长度增加依次减小,A型格栅加筋土挡墙侧移系数总体上相比B型小。桥台挡墙因加筋格栅长度及型式不同导致动土压力衰减规律差异明显,当 1.0H时M型及A型筋材竖向动土压力衰减系数沿墙高呈抛物线函数模型,当 0.7H时,A型和B型筋材竖向动土压力衰减系数沿墙高皆呈指数函数模型。  相似文献   
98.
张超  胡志根 《水科学进展》2019,30(1):102-111
面向工程设计阶段,采用高拱坝施工动态仿真技术获取施工初-中期挡水度汛面貌数据,综合考虑水文、水力随机性因素,构建高拱坝施工初-中期导流风险模型,提出采用Monte Carlo方法耦合挡水度汛面貌数据和主要随机因素进行风险模型求解的方法。基于风险分析原理提出了导流洞设计的风险判别方法,给出导流洞尺寸设计优化的数学模型和具体步骤。通过金沙江上游某高拱坝工程案例分析的结果表明:所提风险模型及求解方法是适用的、有效的,该模型能够得到整个施工初-中期导流风险率,较为客观地反映高拱坝施工中期度汛可能存在的两种挡水情况,克服了初期导流风险模型的局限性;施工中期导流风险率随导流洞尺寸增大而减小,导流洞尺寸设计的可行方案集存在界限,即优化方案。研究成果可为高拱坝施工导流的风险决策和设计优化提供理论支撑。  相似文献   
99.
近年来物探方法在坝基勘探、活断层探测、溶洞探测和基础检测等工程中得到广泛应用,并取得了令人瞩目的成绩。本文介绍了在某水库坝基渗漏勘探开展物探工作的情况,取得了满意的结果,表明应用多种物探方法对解决工程问题具有较好的效果。  相似文献   
100.
Recently constructed concrete‐faced rockfill dams (CFRDs) often use soft inter‐slab joints to prevent axial compression‐induced extrusion damage in the concrete face. Due to the complexity of the multibody contact and the lack of information on the actual behavior of soft joints, it is highly challenging to numerically assess the effect of soft joints in CFRDs. In this paper, we present a numerical approach for the three‐dimensional modeling of CFRDs with hard and soft joints. A dual mortar finite element method with Lagrange multiplier is developed to treat the multibody contact in hard joints with impenetrability condition. The soft joint slab‐filler‐slab contact system is modeled using an equivalent contact interface approach, where the soft contact constraints are imposed using a perturbed Lagrange formulation. Through a series of laboratory tests, the mechanical behavior of soft joint is investigated. An extrusion model for the soft joint is presented and implemented in the dual mortar finite element method. The proposed numerical method is applied to the three‐dimensional analysis of Tianshengqiao‐1 CFRD. Despite the complex multibody contact and strong material and geometry nonlinearities in the CFRD, the proposed method is stable and capable of capturing salient characteristics of the CFRD. Numerical results show that in Tianshengqiao‐1, the employment of soft joints can effectively reduce the axial compression stress, thus greatly alleviating the risk of extrusion damage in the concrete face.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号