首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   393篇
  免费   67篇
  国内免费   138篇
测绘学   2篇
大气科学   6篇
地球物理   63篇
地质学   480篇
海洋学   9篇
综合类   9篇
自然地理   29篇
  2023年   5篇
  2022年   14篇
  2021年   10篇
  2020年   18篇
  2019年   19篇
  2018年   22篇
  2017年   14篇
  2016年   18篇
  2015年   21篇
  2014年   28篇
  2013年   17篇
  2012年   28篇
  2011年   23篇
  2010年   28篇
  2009年   52篇
  2008年   27篇
  2007年   31篇
  2006年   22篇
  2005年   25篇
  2004年   31篇
  2003年   24篇
  2002年   19篇
  2001年   15篇
  2000年   16篇
  1999年   16篇
  1998年   11篇
  1997年   15篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有598条查询结果,搜索用时 218 毫秒
31.
We present the first data on the petrology of the mantle lithosphereof the Southeastern (SE) Slave craton, Canada. These are basedon petrographic, mineralogical and geochemical studies of mantlexenoliths in Pipe 5034 of the Cambrian Gahcho Kué kimberlitecluster. Major types of mantle xenoliths include altered eclogite,coarse garnet or spinel peridotite, and deformed garnet peridotite.The peridotites belong to the low-temperature suite and formedat T=600–1300°C and P= 25–80 kbar in a thick(at least 220–250 km), cool lithosphere. The SE Slavemantle is cooler than the mantle of other Archaean cratons andthat below other terranes of the Slave craton. The thick lithosphereand the relatively cool thermal regime provide favourable conditionsfor formation and preservation of diamonds beneath the SE Slaveterrane. Similar to average Archaean mantle worldwide, the SESlave peridotite is depleted in magmaphile major elements andcontains olivine with forsterite content of 91–93·5.With respect to olivine composition and mode, all terranes ofthe Slave mantle show broadly similar compositions and are relativelyorthopyroxene-poor compared with those of the Kaapvaal and Siberiancratons. The SE Slave spinel peridotite is poorer in Al, Caand Fe, and richer in Mg than deeper garnet peridotite. Thegreater chemical depletion of the shallow upper mantle is typicalof all terranes of the Slave craton and may be common for thesubcontinental lithospheric peridotitic mantle in general. Peridotiticxenoliths of the SE Slave craton were impregnated by kimberliticfluids that caused late-stage recrystallization of primary clinopyroxene,spinel, olivine and spinel-facies orthopyroxene, and formationof interstitial clinopyroxene. This kimberlite-related recrystallizationdepleted primary pyroxenes and spinel in Al. The kimberliticfluid was oxidizing, Ti-, Fe- and K-rich, and Na-poor, and introducedserpentine, chlorite, phlogopite and spinel into peridotitesat P < 35 kbar. KEY WORDS: kimberlite xenolith; lithosphere; mantle terrane; chemical zoning; thermobarometry; Slave craton  相似文献   
32.
Diamond exploration in India over the past decade has led to the discovery of over 80 kimberlite-inferred and lamproite-related intrusions in three of the four major Archean cratons that dominate the subcontinent. These intrusions are Proterozoic (1.1 Ga), and are structurally controlled: locally (at the intersections of faults); regionally (in a 200 km wide, 1000 km long diamond corridor); and globally (in the reconstructed supercontinent of Rodinia). The geochemistry of 57 samples from 13 intrusions in the southern Dharwar Craton of Andhra Pradesh has been determined by XRF spectrometry. The bodies are iron-rich with mg#=50–70 and are neither archetypal kimberlites nor ideal lamproites; this may be the underlying reason that conventional exploration techniques have thus far failed to locate the primary sources of India's historically famous diamonds. The two major fields of kimberlite-clan rocks (KCR) in the Dharwar Craton, Wajrakur and Narayanpet, are separated by a NW–SE trending, transcontinental (Mumbai-Chennai) gravity lineament. About 80% of intrusions in Wajrakur are diamondiferous, but diamonds have not yet been reported in Narayanpet. The gravity anomaly may mark the boundary of an architectural modification in the keel of the sub-continental lithosphere, a suggestion that is supported by differences in kimberlite mineralogy, chemistry, mantle xenoliths, structural setting and crustal host rocks.  相似文献   
33.
The Tocantins Province in Central Brazil is composed of a series of SSW–NNE trending terranes of mainly Proterozoic ages, which stabilized in the Neoproterozoic in the final collision between the Amazon and São Francisco cratons. No previous information on crustal seismic properties was available for this region. Several broadband stations were used to study the regional patterns of crustal and upper mantle structure, extending the results of a recent E–W seismic refraction profile. Receiver functions and surface wave dispersion showed a thin crust (33–37 km) in the Neoproterozoic Magmatic Arc terrane. High average crustal Vp/Vs ratios (1.74–1.76) were consistently observed in this unit. The foreland domain of the Brasília foldbelt, on the other hand, is characterized by thicker crust (42–43 km). Low Vp/Vs ratios (1.70–1.72) were observed in the low-grade foreland fold and thrust zone of the Brasília belt adjacent to the São Francisco craton. Teleseismic P-wave tomography shows that the lithospheric upper mantle has lower velocities beneath the Magmatic Arc and Goiás Massif compared with the foreland zone of the belt and São Francisco craton. The variations in crustal thickness and upper mantle velocities observed with the broadband stations correlate well with the measurements along the seismic refraction profile. The integration of all seismic observations and gravity data indicates a strong lithospheric contrast between the Goiás Massif and the foreland domain of the Brasília belt, whereas little variation was found across the foldbelt/craton surface boundary. These results support the hypothesis that the Brasília foreland domain and the São Francisco craton were part of a larger São Francisco-Congo continental plate in the final collision with the Amazon plate.  相似文献   
34.
In-situ Hf isotope analyses and U–Pb dates were obtained by laser ablation-MC-ICP-MS for a zircon-bearing mantle eclogite xenolith from the diamondiferous Jericho kimberlite located within the Archean Slave Province (Nunavut), Canada. The U–Pb zircon results yield a wide range of ages (2.0 to 0.8 Ga) indicating a complex geological history. Of importance, one zircon yields a U–Pb upper intercept date of 1989 ± 67 Ma, providing a new minimum age constraint for zircon crystallization and eclogite formation. In contrast, Hf isotope systematics for the same zircons display an intriguing uniformity, and corresponding Hf depleted mantle model ages range between 2.1 ± 0.1 and 2.3 ± 0.1 Ga; the youngest Hf model age is within error to the oldest U–Pb date.

The Jericho eclogites have previously been interpreted as representing remnants of metamorphosed oceanic crust, and their formation related to Paleoproterozoic subduction regimes along the western margin of the Archean Slave craton during the Wopmay orogeny. Hf isotope compositions and U–Pb results for the Jericho zircons reported here are in good agreement with a Paleoproterozoic subduction model, suggesting that generation of oceanic crust and eclogite formation occurred between 2.0 and 2.1 Ga. The slightly older Hf depleted mantle model ages (2.1 to 2.3 Ga) may be reconciled with this model by invoking mixing between ‘crustal’-derived Hf from sediments and more radiogenic Hf associated with the oceanic crust during the 2 Ga subduction event. This results in intermediate Hf isotope compositions for the Jericho zircons that yield ‘fictitiously’ older Hf model ages.  相似文献   

35.
Gold mineralization at Hutti is confined to a series of nine parallel, N–S to NNW–SSE trending, steeply dipping shear zones. The host rocks are amphibolites and meta-rhyolites metamorphosed at peak conditions of 660±40°C and 4±1 kbar. They are weakly foliated (S1) and contain barren quartz extension veins. The auriferous shear zones (reefs) are typically characterized by four alteration assemblages and laminated quartz veins, which, in places, occupy the entire reef width of 2–10 m, and contain the bulk of gold mineralization. A <1.5 m wide distal chlorite-sericite (+biotite, calcite, plagioclase) alteration zone can be distinguished from a 3–5 m wide proximal biotite-plagioclase (+quartz, muscovite, calcite) alteration zone. Gold is both spatially and temporally associated with disseminated arsenopyrite and pyrite mineralization. An inner chlorite-K-feldspar (+quartz, calcite, scheelite, tourmaline, sphene, epidote, sericite) alteration halo, which rims the laminated quartz veins, is characterized by a pyrrhotite, chalcopyrite, sphalerite, ilmenite, rutile, and gold paragenesis. The distal chlorite-sericite and proximal biotite-plagioclase alteration assemblages are developed in microlithons of the S2–S3 crenulation cleavage and are replaced along S3 by the inner chlorite-K-feldspar alteration, indicating a two-stage evolution for gold mineralization. Ductile D2 shearing, alteration, and gold mineralization formed the reefs during retrograde evolution and fluid infiltration under upper greenschist to lower amphibolite facies conditions (560±60°C, 2±1 kbar). The reefs were reactivated in the D3 dextral strike-slip to oblique-slip environment by fault-valve behavior at lower greenschist facies conditions (ca. 300–350°C), which formed the auriferous laminated quartz veins. Later D4 crosscutting veins and D5 faults overprint the gold mineralization. The alteration mineralogy and the structural control of the deposit clearly points to an orogenic style of gold mineralization, which took place either during isobaric cooling or at different levels of the Archean crust. From overlaps in the tectono-metamorphic history, it is concluded that gold mineralization occurred during two tectonic events, affecting the eastern Dharwar craton in south India between ca. 2550 – 2530 Ma: (1) The assemblage of various terranes of the eastern block, and (2) a tectono-magmatic event, which caused late- to posttectonic plutonism and a thermal perturbation. It differs, however, from the pre-peak metamorphic gold mineralization at Kolar and the single-stage mineralization at Ramagiri. Notably, greenschist facies gold mineralization occurred at Hutti 35–90 million years later than in the western Dharwar craton. Editorial handling: G. Beaudoin  相似文献   
36.
The distribution of chemical elements at and near the Earth's surface, the so-called critical zone, is complex and reflects the geochemistry and mineralogy of the original substrate modified by environmental factors that include physical, chemical and biological processes over time.Geochemical data typically is illustrated in the form of plan view maps or vertical cross-sections, where the composition of regolith, soil, bedrock or any other material is represented. These are primarily point observations that frequently are interpolated to produce rasters of element distributions. Here we propose the application of environmental or covariate regression modelling to predict and better understand the controls on major and trace element geochemistry within the regolith. Available environmental covariate datasets (raster or vector) representing factors influencing regolith or soil composition are intersected with the geochemical point data in a spatial statistical correlation model to develop a system of multiple linear correlations. The spatial resolution of the environmental covariates, which typically is much finer (e.g. ∼90 m pixel) than that of geochemical surveys (e.g. 1 sample per 10-10,000 km2), carries over to the predictions. Therefore the derived predictive models of element concentrations take the form of continuous geochemical landscape representations that are potentially much more informative than geostatistical interpolations.Environmental correlation is applied to the Sir Samuel 1:250,000 scale map sheet in Western Australia to produce distribution models of individual elements describing the geochemical composition of the regolith and exposed bedrock. As an example we model the distribution of two elements – chromium and sodium. We show that the environmental correlation approach generates high resolution predictive maps that are statistically more accurate and effective than ordinary kriging and inverse distance weighting interpolation methods. Furthermore, insights can be gained into the landscape processes controlling element concentration, distribution and mobility from analysis of the covariates used in the model. This modelling approach can be extended to groups of elements (indices), element ratios, isotopes or mineralogy over a range of scales and in a variety of environments.  相似文献   
37.
The Carrancas Formation outcrops in east-central Brazil on the southern margin of the São Francisco craton where it comprises the base of the late Neoproterozoic Bambuí Group. It is overlain by the basal Ediacaran cap carbonate Sete Lagoas Formation and was for a long time considered to be glacially influenced and correlative with the glaciogenic Jequitaí Formation. New stratigraphic, isotopic and geochronologic data imply that the Carrancas Formation was instead formed by the shedding of debris from basement highs uplifted during an episode of minor continental rifting. Reddish dolostones in the upper Carrancas Formation have δ13C values ranging from +7.1 to +9.6‰, which is a unique C isotopic composition for the lowermost Bambuí Group but similar to values found in the Tijucuçu sequence, a pre-glacial unit in the Araçuaí fold belt on the eastern margin of the São Francisco craton. The stratigraphic position below basal Ediacaran cap carbonates and the highly positive δ13C values together indicate a Cryogenian interglacial age for the Carrancas Formation, with the high δ13C values representing the so-called Keele peak, which precedes the pre-Marinoan Trezona negative δ13C excursion in other well characterized Cryogenian sequences. Hence, The Carrancas Formation pre-dates de Marinoan Jequitaí Formation and represents an interval of Cryogenian stratigraphy not previously known to occur on the southern margin of São Francicso craton. Documentation of Cryogenian interglacial strata on the São Francisco craton reinforces recent revisions to the age of Bambuí Group strata and has implications for the development of the Bambuí basin.  相似文献   
38.
朱光  王薇  顾承串  张帅  刘程 《岩石学报》2016,32(4):935-949
郯庐断裂带晚中生代的演化历史是华北克拉通破坏过程的重要记录。中侏罗世末(燕山运动A幕),郯庐断裂带局部发生左行平移活动,而华北克拉通上出现了一系列北北东走向的缩短构造,指示了西太平洋伊泽奈崎板块俯冲的开始。晚侏罗世期间,郯庐断裂带没有发生活动,而华北克拉通出现局部伸展与岩浆活动及区域性隆升,应为弧后弱拉张背景。早白垩世初(燕山运动B幕),郯庐断裂带再次发生强烈的左行平移活动,华北克拉通北部与东部出现了一系列近南北向挤压产生的构造,应是鄂霍茨克洋最终关闭与伊泽奈崎板块高速俯冲双重作用的结果。随后的早白垩世期间,华北克拉通在弧后拉张背景下发生峰期破坏,郯庐断裂带呈现为强烈的伸展活动。早白垩世末的区域性挤压作用,结束了华北克拉通的峰期破坏,并使郯庐断裂带再次发生了一期左行平移活动。这期挤压作用出现在太平洋板块接替伊泽奈崎板块这一重大板块调整的背景之中。  相似文献   
39.
本文报道了位于华北北缘东段开原地区尖山子岩体、宝兴岩体和树德屯岩体的岩相学、岩石地球化学及年代学特征,探讨了上述岩体的形成时代、岩石成因及其构造环境。锆石U-Pb定年结果表明,尖山子岩体形成于251±1.3Ma,宝兴岩体形成于235±1.3Ma,树德屯岩体形成于224±1.9Ma,说明开原地区三叠纪存在早三叠世、中三叠世和晚三叠世三个时期的岩浆活动。尖山子岩体以二长花岗岩为主,具高硅低镁特征,属钙碱性系列;富集大离子亲石元素Rb、K、Ba、Th,相对亏损Ta、Nb、P、Hf、Zr等高强场元素;δEu=0.55~1.87,(La/Yb)N=6.23~47.9,轻重稀土分馏明显,富集轻稀土,亏损重稀土。宝兴岩体以花岗闪长岩为主,Si O2含量变化较大(52.36%~74.06%),Al2O3含量(14.5%~17.34%),Mg O含量(0.61%~3.66%),属钙碱性系列;富集大离子亲石元素Rb、K、Ba、Th,相对亏损Ta、Nb、P、Ti等高强场元素;无明显的Eu异常,(La/Yb)N=6.81~25.6,轻重稀土分馏较明显,富集轻稀土,亏损重稀土。树德屯岩体以闪长岩为主,岩石具有低硅高镁特征,K2O/Na2O比值为0.33~0.76,显示富K贫Na特征,属钙碱性系列;富集大离子亲石元素Rb、K、Ba、Th,相对亏损Ta、Nb、P、Ti、Hf、Zr等高强场元素;无明显的Eu异常,(La/Yb)N=3.87~10.2,轻重稀土分馏不明显。上述岩石地球化学特征表明,尖山子岩体和宝兴岩体的原始岩浆起源于下地壳基性物质的部分熔融,树德屯岩体的原始岩浆起源于亏损的地幔楔。研究区三叠纪岩浆岩形成于造山阶段挤压环境下。华北北缘东段的挤压碰撞作用一直持续到晚三叠世(224Ma),而造山阶段向造山后阶段的构造转换(挤压地壳加厚向伸展垮塌的环境转换)发生于晚三叠世-早侏罗世(224~180Ma)期间。华北北缘东段中生代岩石圈减薄或破坏始于晚三叠世-早侏罗世(224~180Ma)期间。  相似文献   
40.
The paper deals with geological and geochemical studies of granitoids of the Olenek complex in the Olenek uplift of the basement of the northern Siberian craton. The age of these granitoids was earlier estimated at 2036 ± 11 Ma. The granitoids of the Olenek complex correspond in composition to high-alumina quartz diorites, granites, and leucogranites of the normal petrochemical series. According to geochemical and mineralogical characteristics, the quartz diorites can be assigned to granites of the transitional I-S type, and the granites and leucogranites, to S-type granites. The 8Nd(T values in the granites of the Olenek complex vary from -0.2 to + 1.4, and the Nd model age is 2.4-2.5 Ga. The quartz diorite is characterized by 8Nd(T) = + 3.0 and a Nd model age T(DM) = 2.2 Ga. The geochemical characteristics of the granites and leucogranites indicate their formation through the melting of a source of graywacke composition, whereas the quartz diorites resulted, most likely, from the mixing of granitic and basaltic melts. The fact that the granitoids of the Olenek complex intruded the folded rocks of the Eekit Formation but stay virtually undeformed massive bodies suggests that they formed at the postdeformation stage of the regional evolution after the completion of the Paleoproterozoic orogenic events. The intrusion of granitoids marks the completion of the formation of the Early Proterozoic Eekit fold belt on the western (in the recent coordinates) margin of the Birekta terrane of the Olenek superterraine and the final formation of the superterrane structure. At the next stage of magmatism (1.98-1.96 Ga), best pronounced in the uplifts of the basement of the northern Siberian craton, all terranes forming the Anabar and Olenek superterranes assembled into a single structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号