首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1337篇
  免费   145篇
  国内免费   369篇
测绘学   3篇
大气科学   8篇
地球物理   108篇
地质学   1629篇
海洋学   21篇
天文学   3篇
综合类   48篇
自然地理   31篇
  2024年   5篇
  2023年   12篇
  2022年   21篇
  2021年   25篇
  2020年   28篇
  2019年   42篇
  2018年   40篇
  2017年   34篇
  2016年   37篇
  2015年   40篇
  2014年   36篇
  2013年   91篇
  2012年   71篇
  2011年   53篇
  2010年   42篇
  2009年   75篇
  2008年   59篇
  2007年   89篇
  2006年   93篇
  2005年   68篇
  2004年   73篇
  2003年   71篇
  2002年   61篇
  2001年   63篇
  2000年   60篇
  1999年   68篇
  1998年   55篇
  1997年   50篇
  1996年   59篇
  1995年   63篇
  1994年   56篇
  1993年   56篇
  1992年   36篇
  1991年   20篇
  1990年   20篇
  1989年   27篇
  1988年   10篇
  1987年   12篇
  1986年   12篇
  1985年   5篇
  1984年   6篇
  1983年   7篇
排序方式: 共有1851条查询结果,搜索用时 31 毫秒
991.
Within the last few years several studies have been completed to evaluate strength, stiffness, and durability properties of pulverized coal combustion (PCC) bottom ash mixed with various admixtures. Studies have shown that strength and stiffness of PCC bottom ash mixed with sodium bentonite changes with the increase in the curing period. Researchers have concluded that this change is due to the chemical composition of the bottom ash and bentonite. In order to understand the reasons for the change in characteristics of bottom ash-bentonite mixtures with time, the strength and structural characteristics of bottom ash-bentonite mixtures cured for various periods was evaluated. Results of the strength testing showed increase in strength and stiffness of the mixtures with curing period. The results of structural analysis using environmental scanning electron microscopy show development of fibrous elements which may cause increase in the unconfined compressive strength and stiffness of the mixtures with the curing period. Selected results from this study are presented herein.  相似文献   
992.
Indoor coal-combustion type fluorosis is the only type of endemic disease that still lacks effective method of prevention and control. By the end of 2000, there had been 33901 thousand peoples living in the indoor coal-combustion-type fluorosis area, including 17695 thousand patients of dental fluorosis, and 1465 thousand patients with skeletal fluorosis. Guizhou is the province that suffers mostly from indoor coal-combustion-type fluorosis. 28.11% of the total population of Guizhou Province, 14489 thousand peoples, including 9910 thousand dental fluorosis patients, are living in indoor coal-combustion-type fluorosis area in Guizhou Province (NSB, 2000). During the period of 1980-1984, the following results were proved by authors : (1) there is no positive relationship between fluorine concentrations in foodstuff and in soils and rocks; (2) absorbed fluorine from indoor combustion formed high fluorine content foodstuffs. Fluorine emitted from combustion was acid-soluble fluorine; and (3) of the two factors that induced fluorosis,  相似文献   
993.
REE mineralogy was characterized at the micrometer scale (using scanning electron microscopy) in the four tectono-metamorphic units of the Beni Mzala window, Sebtide Complex, Internal Rif, Morocco, which sample a HP-LT metamorphic gradient from subgreenschist to blueschist/eclogite facies. These tectonic units are composed of garnet-free metapelites (and associated synmetamorphic veins) from the same homogeneous aluminium-rich and calcium-poor protolith. In that context, mineralogical differences between units are assumed to result from contrasted pressure and temperature histories. Light REE-bearing Al-phosphates of the crandallite group with florencite-rich composition and variable goyazite content are the dominant LREE minerals in the lowest-grade units, Tizgarine (300 °C, 3 kbar as peak conditions) and Boquete de Anjera (350 °C, 10 kbar). In the latter unit, metamorphic florencite is associated with MREE-rich monazite. In the schist of the highest-grade units, Beni Mzala 2 (420–450 °C, 12 kbar) and Beni Mzala 1 (550 °C, 16 kbar), associations of allanite-rich epidote and synchisite (a LREE-fluorocarbonate) are found whereas florencite and monazite are no longer observed. At the wall of the quartz–kyanite veins, retrograde monazite-(Ce) with grain size of 20 to 50 μm is the only LREE-bearing mineral. Th–Pb and U–Pb SIMS data on some of these grains yield ages of 21.3 ± 1.7 Ma and 20.9 ± 2.1 Ma, respectively, consistent with previous K–Ar ages obtained on retrograde clay–mica mixtures in rocks from the same locality. The identification of a stability field for monazite in high-pressure aluminous metapelites with an upper thermal-limit below 450 °C as well as the derivation of meaningful U–Pb and Th–Pb SIMS ages demonstrates the monazite potential for dating HP-LT metapelites. However, since, under these conditions, monazite growth occurs below its admitted closure-temperature, these ages must be interpreted on the basis of monazite textural relationships.  相似文献   
994.
Petrological analysis, zircon trace element analysis and SHRIMP zircon U–Pb dating of retrogressed eclogite and garnet granulite from Bibong, Hongseong area, SW Gyeonggi Massif, South Korea provide compelling evidence for Triassic (231.4 ± 3.3 Ma) high-pressure (HP) eclogite facies (M1) metamorphisms at a peak pressure–temperature (PT) of ca. 16.5–20.0 kb and 775–850 °C. This was followed by isothermal decompression (ITD), with a sharp decrease in pressure from 20 to 10 kb and a slight temperature rise from eclogite facies (M1) to granulite facies (M2), followed by uplift and cooling. Granitic orthogneiss surrounding the Baekdong garnet granulite and the ophiolite-related ultramafic lenticular body near Bibong records evidence for a later Silurian (418 ± 8 Ma) intermediate high-pressure (IHP) granulite facies metamorphism and a prograde PT path with peak PT conditions of ca. 13.5 kb and 800 °C. K–Ar ages of biotite from garnet granulites, amphibolites, and granitic orthogneisses in and around the Bibong metabasite lenticular body are 208–219 Ma, recording cooling to about 310 °C after the Early Triassic metamorphic peak. Neoproterozoic zircon cores in the retrogressed eclogite and granitic orthogneiss provide evidence that the protoliths of these rocks were  800 and  900 Ma old, respectively, similar to the ages of tectonic episodes in the Central Orogenic Belt of China. This, and the evidence for Triassic HP/UHP metamorphism in both China and Korea, is consistent with a regional tectonic link within Northeast Asia from the time of Rodinia amalgamation to Triassic continent–continent collision between the North and South China Blocks, and with an eastward extension of the Dabie–Sulu suture zone into the Hongseong area of South Korea.  相似文献   
995.
Lawsonite eclogites preserve a record of very-low-temperature conditions in subduction zones. All occur at active margin settings, typically characterized by accretionary complexes lithologies and as tectonic blocks within serpentinite-matrix mélange. Peak lawsonite-eclogite facies mineral assemblages (garnet + omphacite + lawsonite + rutile) typically occur in prograde-zoned garnet porphyroblasts. Their matrix is commonly overprinted by higher-temperature epidote-bearing assemblages; greenschist- or amphibolite-facies conditions erase former lawsonite-eclogite relics. Various pseudomorphs after lawsonite occur, particularly in some blueschist/eclogite transitional facies rocks. Coesite-bearing lawsonite-eclogite xenoliths in kimberlitic pipes and lawsonite pseudomorphs in some relatively low-temperature ultrahigh-pressure eclogites are known. Using inclusion assemblages in garnet, lawsonite eclogites can be classified into two types: L-type, such as those from Guatemala and British Columbia, contain garnet porphyroblasts that grew only within the lawsonite stability field and E-type, such as from the Dominican Republic, record maximum temperature in the epidote-stability field.

Formation and preservation of lawsonite eclogites requires cold subduction to mantle depths and rapid exhumation. The earliest occurrences of lawsonite-eclogite facies mineral assemblages are Early Paleozoic in Spitsbergen and the New England fold belt of Australia; this suggests that since the Phanerozoic, secular cooling of Earth and subduction-zone thermal structures evolved the necessary high pressure/temperature conditions. Buoyancy of serpentinite and oblique convergence with a major strike-slip component may facilitate the exhumation of lawsonite eclogites from mantle depths.  相似文献   

996.
The Fe2+–Mg distribution coefficients between sapphirine and spinel:
were experimentally determined at pressures of 9–13 kbar and temperatures of 950–1150 °C using a natural ultrahigh-temperature (UHT) granulite with paragenesis of these minerals from the Napier Complex in East Antarctica [XMg = Mg / (Fe + Mg); XFe = Fe / (Fe + Mg)]. A new sapphirine–spinel geothermometer has been obtained as:

We applied the exchange thermometer to UHT or high-grade metamorphic rocks that were reported from various complexes in the world. If the KD values of 2.63–4.34 obtained from low-Cr mineral pairs such as XCrSpr < 0.016 and XCrSpl < 0.047 were substituted into the equation, their temperature conditions would be estimated as 806–1050 °C at 11 kbar. The XCr means Cr / (Al + Cr(+ Fe3+)). These temperatures are reasonable retrograde or near peak metamorphic condition.  相似文献   

997.
The Lesser Himalayan low- to medium-grade metamorphic rocks in central Nepal are rich in K-white micas occurring as porphyroclasts and in matrix defining S1 and S2. Porphyroclasts are usually zoned with celadonite-poor cores and celadonite-rich rims. The cores are the relics of igneous or high grade metamorphic muscovites, and the rims were re-equilibrated or overgrown under lower T metamorphic conditions. The matrix K-white micas defining S1, pre-dating the Main Central Thrust activity, are generally celadonite-rich. They show heterogeneous compositional zoning with celadonite-rich cores and celadonite-poor rims. They were recrystallized at lower T condition prior to the Main Central Thrust activity, most probably prior to the India–Asia collision (pre-Himalayan metamorphism). The matrix K-white micas along S2, synchronous to the Main Central Thrust activity (Neohimalayan metamorphism), are relatively celadonite-poor and were recrystallized under relatively higher T condition. K-white micas defining S1 also were partially re-equilibrated during the Neohimalayan metamorphism. The average compositions of recrystallized K-white micas defining both S1 and S2 become gradually poor in (Fe + Mg)- and Si-contents and rich in Al- and Ti-contents from south to north showing an increase of metamorphic grade from structurally lower to higher parts in the Lesser Himalaya. This shows that the metamorphism is inverted throughout the inner Lesser Himalaya. The tectono-metamorphic significance of the published K–Ar and 40Ar / 39Ar K-white micas ages from the Lesser Himalaya need re-evaluation in the context of observed intrasample compositional variation and zoning, and possible higher closure temperature (500 °C) for K–Ar system.  相似文献   
998.
The Achankovil Zone of southern India, a NW–SE trending lineament of 8–10 km in width and > 100 km length, is a kinematically debated crustal feature, considered to mark the boundary between the Madurai Granulite Block in the north and the Trivandrum Granulite Block in the south. Both these crustal blocks show evidence for ultrahigh-temperature metamorphism during the Pan-African orogeny, although the exhumation styles are markedly different. The Achankovil Zone is characterized by discontinuous strands of cordierite-bearing gneiss with an assemblage of cordierite + garnet + quartz + plagioclase + spinel + ilmenite + magnetite ± orthopyroxene ± biotite ± K-feldspar ± sillimanite. The lithology preserves several peak and post-peak metamorphic assemblages including: (1) orthopyroxene + garnet, (2) perthite and/or anti-perthite, (3) cordierite ± orthopyroxene corona around garnet, and (4) cordierite + quartz symplectite after garnet. We estimate the peak metamorphic conditions of these rocks using orthopyroxene-bearing geothermobarometers and feldspar solvus which yield 8.5–9.5 kbar and 940–1040 °C, the highest PT conditions so far recorded from the Achankovil Zone. The retrograde conditions were obtained from cordierite-bearing geothermobarometers at 3.5–4.5 kbar and 720 ± 60 °C. From orthopyroxene chemistry, we record a multistage exhumation history for these rocks, which is closely comparable with those reported in recent studies from the Madurai Granulite Block, but different from those documented from the Trivandrum Granulite Block. An evaluation of the petrologic and geochronologic data, together with the nature of exhumation paths leads us to propose that the Achankovil Zone is probably the southern flank of the Madurai Granulite Block, and not a unit of the Trivandrum Granulite Block as presently believed. Post-tectonic alkali granites that form an array of “suturing plutons” along the margin of the Madurai Granulite Block and within the Achankovil Zone, but are absent in the Trivandrum Granulite Block, suggest that the boundary between the Madurai Granulite Block and the Trivandrum Granulite Block might lie along the Tenmalai shear zone at the southern extremity of the Achankovil Zone.  相似文献   
999.
Granulite-facies rocks are intermittently exposed in a roughly E–W trending belt that extends for approximately 2000 km across the North China Craton, from the Helanshan, Qianlishan, Wulashan–Daqingshan, Guyang and Jining Complexes in the Western Block, through the Huai'an, Hengshan, Xuanhua and Chengde Complexes in the Trans-North China Orogen, to the Jianping (Western Liaoning), Eastern Hebei, Northern Liaoning and Southern Jilin Complexes in the Eastern Block. The belt is generally referred to as the North China Granulite-Facies Belt, previously interpreted as the lowest part of an obliquely exposed crust of the North China Craton. Recent data indicate that the North China Granulite-Facies Belt is not a single terrane. Instead, it represents components of three separate terranes: the Eastern and Western Blocks and Trans-North China Orogen. Each of these units records different metamorphic histories and reflect the complex tectonic evolution of the NCC during the late Archean and Paleoproterozoic. Mafic granulites in the Eastern Block and the Yinshan Terrane (Western Block) underwent medium-pressure granulite-facies metamorphism at about 2.5 Ga, with anticlockwise P–T paths involving near isobaric cooling following peak metamorphism, reflecting an origin related to intrusion and underplating of mantle-derived magmas. Pelitic granulites in the Khondalite Belt (Western Block) underwent medium-pressure granulite-facies metamorphism at about 2.0–1.9 Ga, with clockwise P–T paths, which record the Paleoproterozoic amalgamation of the Yinshan and Ordos Terranes to form the Western Block. Mafic and pelitic granulites in the Trans-North China Orogen experienced high- to medium-pressure granulite-facies metamorphism at 1.85 Ga, with clockwise P–T paths involving nearly isothermal decompression following peak metamorphism, which are in accord with the final collision between the Eastern and Western Blocks to form the North China Craton at 1.8 Ga. The NCGB cannot therefore represent a separate unique terrane; instead it reflects the amalgamation of three separate granulite terranes that evolved independently and at different times.  相似文献   
1000.
氧弹燃烧-电位滴定法测定煤中氯   总被引:3,自引:0,他引:3  
李权斌 《岩矿测试》2006,25(1):79-81
介绍了氧弹燃烧-电位滴定法测定煤中氯离子含量的方法:将样品于加入已知量的碳酸铵溶液的氧弹内燃烧,释放出的氯被碳酸铵溶液吸收后用0.01mol/L的硝酸银标准溶液进行电位滴定。方法的检出限为0.007mg,回收率为96.4%-101.4%。用于实际样品的测定,准确度和精密度与ISO和国标方法相当,但操作简便、快捷。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号