首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   945篇
  免费   390篇
  国内免费   521篇
测绘学   15篇
大气科学   1篇
地球物理   492篇
地质学   1202篇
海洋学   55篇
天文学   3篇
综合类   44篇
自然地理   44篇
  2024年   3篇
  2023年   14篇
  2022年   28篇
  2021年   36篇
  2020年   56篇
  2019年   57篇
  2018年   62篇
  2017年   77篇
  2016年   66篇
  2015年   58篇
  2014年   86篇
  2013年   105篇
  2012年   77篇
  2011年   96篇
  2010年   78篇
  2009年   77篇
  2008年   64篇
  2007年   65篇
  2006年   71篇
  2005年   44篇
  2004年   64篇
  2003年   58篇
  2002年   49篇
  2001年   43篇
  2000年   52篇
  1999年   49篇
  1998年   41篇
  1997年   41篇
  1996年   53篇
  1995年   42篇
  1994年   26篇
  1993年   36篇
  1992年   19篇
  1991年   21篇
  1990年   13篇
  1989年   12篇
  1988年   8篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1978年   1篇
  1977年   1篇
  1954年   3篇
排序方式: 共有1856条查询结果,搜索用时 15 毫秒
51.
The Armutlu Peninsula and adjacent areas in NW Turkey play a critical role in tectonic reconstructions of the southern margin of Eurasia in NW Turkey. This region includes an inferred Intra-Pontide oceanic basin that rifted from Eurasia in Early Mesozoic time and closed by Late Cretaceous time. The Armutlu Peninsula is divisible into two metamorphic units. The first, the Armutlu Metamorphics, comprises a ?Precambrian high-grade metamorphic basement, unconformably overlain by a ?Palaeozoic low-grade, mixed siliciclastic/carbonate/volcanogenic succession, including bimodal volcanics of inferred extensional origin, with a possibly inherited subduction signature. The second unit, the low-grade znik Metamorphics, is interpreted as a Triassic rift infilled with terrigenous, calcareous and volcanogenic lithologies, including basalts of within-plate type. The Triassic rift was unconformably overlain by a subsiding Jurassic–Late Cretaceous (Cenomanian) passive margin including siliciclastic/carbonate turbidites, radiolarian cherts and manganese deposits. The margin later collapsed to form a flexural foredeep associated with the emplacement of ophiolitic rocks in Turonian time. Geochemical evidence from meta-basalt blocks within ophiolite-derived melange suggests a supra-subduction zone origin for the ophiolite. The above major tectonic units of the Armutlu Peninsula were sealed by a Maastrichtian unconformity. Comparative evidence comes from the separate Almacık Flake further east.Considering alternatives, it is concluded that a Mesozoic Intra-Pontide oceanic basin separated Eurasia from a Sakarya microcontinent, with a wider Northern Neotethys to the south. Lateral displacement of exotic terranes along the south-Eurasian continental margin probably also played a role, e.g. during Late Cretaceous suturing, in addition to overthrusting.  相似文献   
52.
In southern Turkey ongoing differential impingement of Arabia into the weak Anatolian collisional collage resulting from subduction of the Neotethyan Ocean has produced one of the most complex crustal interactions along the Alpine–Himalayan Orogen. Several major transforms with disputed motions, including the northward extension of the Dead Sea Fault Zone (DSFZ), meet in this region. To evaluate neotectonic motion on the Amanos and East Hatay fault zones considered to be northward extensions of the DSFZ, the palaeomagnetism of volcanic fields in the Karasu Rift between these faults has been studied. Remanence carriers are low-Ti magnetites and all except 5 of 51 basalt lavas have normal polarity. Morphological, polarity and K–Ar evidence show that rift formation occurred largely during the Brunhes chron with volcanism concentrated at 0.66–0.35 Ma and a subsidiary episode at 0.25–0.05. Forty-four units of normal polarity yield a mean of D/I=8.8°/54.7° with inclination identical to the present-day field and declination rotated clockwise by 8.8±4.0°. Within the 15-km-wide Hassa sector of the Karasu Rift, the volcanic activity is concentrated between the Amanos and East Hatay faults, both with left lateral motions, which have rotated blocks bounded by NW–SE cross faults in a clockwise sense as the Arabian Block has moved northwestwards. An average lava age of 0.5 Ma yields a minimum cumulative slip rate on the system bounding faults of 0.46 cm/year according with the rate deduced from the Africa–Arabia Euler vector and reduced rates of slip on the southern extension of the DSFZ during Plio-Quaternary times. Estimates deduced from offsets of dated lavas flows and morphological features on the Amanos Fault Zone [Tectonophysics 344 (2002) 207] are lower (0.09–0.18 cm/year) probably because they are limited to surface fault breaks and do not embrace the seismogenic crust.Results of this study suggest that most strike slip on the DSFZ is taken up by the Amanos–East Hatay–Afrin fault array in southern Turkey. Comparable estimates of Quaternary slip rate are identified on other faults meeting at an unstable FFF junction (DSFZ, East Anatolian Fault Zone, Karatas Fault Zone). A deceleration in slip rate across the DSFZ and its northward continuation during Plio-Quaternary times correlates with reorganization of the tectonic regime during the last 1–3 Ma including tectonic escape within Anatolia, establishment of the North and East Anatolian Fault Zones bounding the Anatolian collage in mid–late Pliocene times, a contemporaneous transition from transpression to transtension and concentration of all basaltic magmatism in this region within the last 1 Ma.  相似文献   
53.
The northern Fossa Magna (NFM) basin is a Miocene rift system produced in the final stages of the opening of the Sea of Japan. It divides the major structure of Japan into two regions, with north-trending geological structures to the NE of the basin and EW trending structures to the west of the basin. The Itoigawa-Shizuoka Tectonic Line (ISTL) bounds the western part of the northern Fossa Magna and forms an active fault system that displays one of the largest slip rates (4–9 mm/year) in the Japanese islands. Deep seismic reflection and refraction/wide-angle reflection profiling were undertaken in 2002 across the northern part of ISTL in order to delineate structures in the crust, and the deep geometry of the active fault systems. The seismic images are interpreted based on the pattern of reflectors, the surface geology and velocities derived from refraction analysis. The 68-km-long seismic section suggests that the Miocene NFM basin was formed by an east dipping normal fault with a shallow flat segment to 6 km depth and a deeper ramp penetrating to 15 km depth. This low-angle normal fault originated as a comparatively shallow brittle/ductile detachment in a high thermal regime present in the Miocene. The NFM basin was filled by a thick (>6 km) accumulation of sediments. Shortening since the late Neogene is accommodated along NS to NE–SE trending thrust faults that previously accommodated extension and produce fault-related folds on their hanging wall. Based on our balanced geologic cross-section, the total amount of Miocene extension is ca. 42 km and the total amount of late Neogene to Quaternary shortening is ca. 23 km.  相似文献   
54.
Tortonian calcarenites of the Betic Cordillera were deposited in coastal or very shallow marine environments and represent an ideal marker for estimating vertical movements from the late Miocene to the Present. A map showing the heights at which these Tortonian marine rocks are situated has a clear correlation with the present relief, indicating that today's relief has been formed since the Tortonian. There is also a good correlation between present relief and the Bouguer anomaly distribution in the Betic Cordillera, as well as with crustal thickness. Likewise, the present relief is directly related to the geodynamic setting of a horizontal N–S to NNW–SSE compression and an almost perpendicular extension, along with isostatic readjustment, existing in the Betic Cordillera from the Tortonian. As a result of these regional stresses, faults and folds have produced notable vertical movements. The highest rates of uplift of the Betic Cordillera coincide with large antiforms, in particular those of the Sierra Nevada and the Sierra Filabres. Several subsiding sectors also exist (for example, the Granada Basin or the Guadalquivir Basin). The foreland Guadalquivir Basin has a complex history because the uplift in its eastern sector and subsidence in the western sector coexisted during the late Tortonian. Today the whole Betic Cordillera is characterized by differential regional uplift, even in the aforementioned subsiding sectors.  相似文献   
55.
This paper presents the preliminary results from a study of Holocene-emerged shorelines, marine notches, and their tectonic implications along the Jalisco coast. The Pacific coast of Jalisco, SW Mexico, is an active tectonic margin. This coast has been the site of two of the largest earthquakes to occur in Mexico this century: the 1932 (Mw 8.2) Jalisco earthquake and the 1995 (Mw 8.0) Colima earthquake. Measurement and preliminary radiocarbon dating of emergent paleoshorelines along the Jalisco coast provide the first constraints upon the timing for tectonic uplift. Along this coastline, uplifted Holocene marine notches and wave-cut platforms occur at elevations ranging from ca. 1 to 4.5 m amsl. In situ intertidal organisms dated with radiocarbon, the first ever reported for the Jalisco area, provide preliminary results that record tectonic uplift during at least the past 1300 years BP at an average rate of about 3 mm/year. We propose a model in which coseismic subsidence produced by offshore earthquakes is rapidly recovered during the postseismic and interseismic periods. The long-term period is characterized by slow tectonic uplift of the Jalisco coast. We found no evidence of coastal interseismic and long-term subsidence along the Jalisco coast.  相似文献   
56.
在中下扬子地区地壳区域性滑动层位岩石物性力学参数研究的基础上,对上扬子地区地壳的相应岩层进行了系统的定量测试。其滑动层位各种参量在塑性、韧性和粘性上所表现出特征的规律,在我国南方型数字地层中,具有一定的普遍性和可比性。同时,也揭示了地壳的构造分层性,并可作为上扬子板块浅层地质—地球物理特征分析的重要依据和建库信息。  相似文献   
57.
VMS deposits of the South Urals developed within the evolving Urals palaeo-ocean between Silurian and Late Devonian times. Arc-continent collision between Baltica and the Magnitogorsk Zone (arc) in the south-western Urals effectively terminated submarine volcanism in the Magnitogorsk Zone with which the bulk of the VMS deposits are associated. The majority of the Urals VMS deposits formed within volcanic-dominated sequences in deep seawater settings. Preservation of macro and micro vent fauna in the sulphide bodies is both testament to the seafloor setting for much of the sulphides but also the exceptional degree of preservation and lack of metamorphic overprint of the deposits and host rocks. The deposits in the Urals have previously been classified in terms of tectonic setting, host rock associations and metal ratios in line with recent tectono-stratigraphic classifications. In addition to these broad classes, it is clear that in a number of the Urals settings, an evolution of the host volcanic stratigraphy is accompanied by an associated change in the metal ratios of the VMS deposits, a situation previously discussed, for example, in the Noranda district of Canada.Two key structural settings are implicated in the South Urals. The first is seen in a preserved marginal allochthon west of the Main Urals Fault where early arc tholeiites host Cu–Zn mineralization in deposits including Yaman Kasy, which is host to the oldest macro vent fauna assembly known to science. The second tectonic setting for the South Urals VMS is the Magnitogorsk arc where study has highlighted the presence of a preserved early forearc assemblage, arc tholeiite to calc-alkaline sequences and rifted arc bimodal tholeiite sequences. The boninitc rocks of the forearc host Cu–(Zn) and Cu–Co VMS deposits, the latter hosted in fragments within the Main Urals Fault Zone (MUFZ) which marks the line of arc-continent collision in Late Devonian times. The arc tholeiites host Cu–Zn deposits with an evolution to more calc-alkaline felsic volcanic sequences matched with a change to Zn–Pb–Cu polymetallic deposits, often gold-rich. Large rifts in the arc sequence are filled by thick bimodal tholeiite sequences, themselves often showing an evolution to a more calc-alkaline nature. These thick bimodal sequences are host to the largest of the Cu–Zn VMS deposits.The exceptional degree of preservation in the Urals has permitted the identification of early seafloor clastic and hydrolytic modification (here termed halmyrolysis sensu lato) to the sulphide assemblages prior to diagenesis and this results in large-scale modification to the primary VMS body, resulting in distinctive morphological and mineralogical sub-types of sulphide body superimposed upon the tectonic association classification.It is proposed that a better classification of seafloor VMS systems is thus achievable using a three stage classification based on (a) tectonic (hence bulk volcanic chemistry) association, (b) local volcanic chemical evolution within a single edifice and (c) seafloor reworking and halmyrolysis.  相似文献   
58.
This study evaluates the susceptibility of landslides in the Lai Chau province of Vietnam using Geographic Information System (GIS) and remote sensing data to focus on the relationship between tectonic fractures and landslides. Landslide locations were identified from aerial photographs and field surveys. Topographic, geological data and satellite images were collected, processed, and constructed into a spatial database using GIS data and image-processing techniques. A scheme of the tectonic fracturing of crust in the Lai Chau region was established. Lai Chau was identified as a region with many crustal fractures, where the grade of tectonic fracture is closely related to landslide occurrence. The influencing factors of landslide occurrence were: distance from a tectonic fracture, slope, aspect, curvature, soil, and vegetative land cover. Landslide prone areas were analyzed and mapped using the landslide occurrence factors employing the probability–frequency ratio model. The results of the analysis were verified using landslide location data and showed 83.47% prediction accuracy. That emphasized a strong relationship between the susceptibility map and the existing landslide location data. The results of this study can form a basis stable development and land use planning for the region.  相似文献   
59.
岳锋  程礼军  焦伟伟  王飞 《地质科学》2016,(4):1090-1100
天然裂缝对页岩气储集和渗流有重要影响,但目前对页岩构造裂缝研究不够深入。本文通过露头、岩心裂缝观察和分析,探讨了渝东南下古生界页岩构造裂缝类型、形成机理及分布控制因素。基于裂缝特征及力学成因,将剪切裂缝分为高角度剪切裂缝、倾斜滑脱裂缝和水平滑脱裂缝。倾斜滑脱裂缝是在上覆岩层重力和水平构造应力共同作用下沿应力集中的软弱面发生剪切滑动形成,水平滑脱裂缝是在构造挤压应力作用条件下主要沿页理面方向的剪切或层间滑动形成;页理发育程度及岩层曲率是控制水平滑脱裂缝形成的关键因素,岩石矿物组成、构造作用及岩层厚度是控制其它类型构造裂缝形成和分布的主要因素,页岩岩石力学层的划分需要根据裂缝特征、岩性变化特征、岩石力学参数及沉积界面等综合确定,岩层厚度与层间构造裂缝密度呈负相关关系。  相似文献   
60.
第三纪是四川盆地大范围陆相沉积历史的最后阶段, 同时又是四川盆地重要的构造定形期.探究该时期原型盆地沉积充填规律与构造演化特征, 是揭示四川盆地形成演化过程, 还原其古地理、古气候演变的关键.在综合利用古地磁、地震、野外露头等资料的基础之上, 从盆-山结合的角度出发, 以地质历史时间为主要线索, 对第三纪原型盆地分阶段、分区域地进行了动态化分析研究.重建了各沉积时期原型盆地构造-古地理格局, 分析了盆地沉积充填规律并复原了不同阶段沉积相带的空间展布特征.主要受周缘山系逆冲推覆作用产生的构造负载和盆地基底构造的影响, 第三纪时期四川盆地沉积范围局限于西南部、南部地区, 以河、湖沉积环境为主, 处于持续地挤压、充填过程而具有萎缩消亡的趋势.现今残余第三系地层由老到新, 主要由名山组、芦山组、大邑砾岩组等地层组成(先后经历了: 受造山带挤压推覆作用和温暖干旱气候等因素影响, 发育湖盆边缘冲积扇和沙漠沉积环境, 处于快速沉降阶段的名山组沉积时期; 以及构造活动相对稳定, 湖盆面积不断减小, 以沙泥质沉积互层为特征的芦山组沉积时期; 和沿山前带由南向北迁移, 以发育大型冲积扇为特征的大邑砾岩组沉积时期).纵观整个第三纪构造演化历史, 反映出四川盆地西南部地区在第三纪时期表现为典型的陆内坳陷沉积盆地性质.同期的大地构造活动和气候变化等因素对原型盆地的形成与演化起到了重要的控制作用, 同时也对该时期盆地古地理格局和沉积充填规律产生了重要影响.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号