首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276篇
  免费   49篇
  国内免费   205篇
测绘学   1篇
地球物理   46篇
地质学   474篇
海洋学   2篇
综合类   5篇
自然地理   2篇
  2024年   1篇
  2023年   7篇
  2022年   12篇
  2021年   13篇
  2020年   18篇
  2019年   19篇
  2018年   15篇
  2017年   22篇
  2016年   19篇
  2015年   18篇
  2014年   18篇
  2013年   43篇
  2012年   31篇
  2011年   15篇
  2010年   10篇
  2009年   30篇
  2008年   19篇
  2007年   27篇
  2006年   23篇
  2005年   18篇
  2004年   16篇
  2003年   17篇
  2002年   1篇
  2001年   10篇
  2000年   10篇
  1999年   13篇
  1998年   10篇
  1997年   11篇
  1996年   12篇
  1995年   7篇
  1994年   12篇
  1993年   16篇
  1992年   7篇
  1991年   6篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有530条查询结果,搜索用时 15 毫秒
41.
柴北缘牦牛山地区牦牛山组沉积相组合特征   总被引:5,自引:0,他引:5  
柴达木盆地北缘牦牛山地区出露的牦牛山组是一套由冲积扇和扇三角洲相共同构成的陆相沉积组合,冲积扇相砾岩-粗砂岩组合主要分布于研究区SE侧,扇三角洲相砂岩-泥岩组合主要分布于研究区NW侧。古水流分析表明牦牛山组沉积物主要来自其SE侧古隆起,但后期扇三角洲相包含少量来自NW和NE向的沉积物。该套沉积组合序列特征与区域上分布在牦牛山西侧同时期形成的湖泊相、滨浅海相沉积共同表明,柴达木盆地北缘在晚志留-早泥盆世时期存在一NW向倾斜的古斜坡,且晚期北侧发生抬升。砾岩和砂岩碎屑组成与区域岩石组合类型对比表明,牦牛山组沉积碎屑物主要来自于滩间山群。沉积组合序列特征、碎屑组成和区域构造背景综合研究表明,牦牛山组可能为柴达木板块向北俯冲过程中形成的局部断陷盆地的充填物。  相似文献   
42.
43.
The alkalic Scituate Granite was emplaced into crystalline sequences within the New England Esmond–Dedham terrane in the Late Devonian ( c. 370 Ma). Variably recrystallized amphibole (iron-rich, hastingsite–hastingsitic hornblende) from four variably deformed samples of the pluton record south-westerly younging 40Ar/39Ar plateau ages ranging between 276 and 263 Ma. These are interpreted to date diachronous cooling through temperatures appropriate for intracrystalline retention of argon following late Palaeozoic orogenic activity. Iron-rich biotite concentrates from the samples record only slightly younger ages, and therefore suggest relatively rapid post-metamorphic cooling. The 40Ar/39Ar ages indicate that the late Palaeozoic tectonothermal overprint was much more regionally pervasive than was previously considered. The apparent timing of this activity is similar to previous estimates for the chronology of high-grade metamorphism throughout the adjacent Hope Valley terrane and for phases of ductile movement on the intervening Lake Char–Honey Hill fault system.  相似文献   
44.
Knowledge of the Cretaceous–Tertiary history of upper crustal shortening and magmatism in Tibet is fundamental to placing constraints on when and how the Tibetan plateau formed. In the Lhasa terrane of southern Tibet, the widely exposed angular unconformity beneath uppermost Cretaceous–lower Tertiary volcanic-bearing strata of the Linzizong Formation provides an excellent geologic and time marker to distinguish between deformation that occurred before vs. during the Indo-Asian collision. In the Linzhou area, located  30 km north of the city of Lhasa, a > 3-km-thick section of the Linzizong Formation lies unconformably on Cretaceous and older rocks that were shortened by both northward- and southward-verging structures during the Late Cretaceous. The Linzizong Formation dips northward in the footwall of a north-dipping thrust system that involves Triassic–Jurassic strata and a granite intrusion in the hanging wall. U–Pb zircon geochronologic studies show that the Linzizong Formation ranges in age from 69 Ma to at least 47 Ma and that the hanging wall granite intrusion crystallized at  52 Ma, coeval with dike emplacement into footwall Cretaceous strata. 40Ar/39Ar thermochronologic studies suggest slow cooling of the granite between 49 and 42 Ma, followed by an episode of accelerated cooling to upper crustal levels beginning at  42 Ma. The onset of rapid cooling was coeval with the cessation of voluminous arc magmatism in southern Tibet and is interpreted be a consequence of either (1) Tertiary thrusting in this region or (2) regional rock uplift and erosion following removal of overthickened Gangdese arc lower crust and upper mantle or break-off of the Neo-Tethyan oceanic slab.  相似文献   
45.
王浩铮  张华锋  翟明国 《岩石学报》2015,31(6):1694-1710
高级变质岩的变质历史是反演地壳构造-热事件的重要依据,然而高温扩散和重结晶作用能够改造造岩矿物中的主量元素分布,这对峰期变质温压条件的反演产生很不利的影响。相对于主量元素,微量元素,尤其是离子半径较大的REE,由于其在晶格中的扩散速率远小于主量元素,在高级叠加变质过程有可能记录前期变质作用。本文以胶北地体的高压基性麻粒岩为研究对象,通过详细的岩相学和矿物化学分析,初步解析了变质重结晶过程中的矿物微量元素再分配特征及其对变质作用的指示意义。岩相学上的证据表明这些样品经历了麻粒岩相变质和后期重结晶作用。单矿物的原位化学成分分析,峰期矿物石榴石、单斜辉石的主量元素Mg、Fe、Ca等二价阳离子分布均一,但部分稀土元素及微量元素则表现出钟形剖面环带分布,暗示主量元素遭受到成份扩散及重结晶所致的元素再分配,微量元素可记录峰期历史。结合主、微量元素温压计,我们分别估算了胶东基性高压麻粒岩的峰期(828℃、1.27GPa)和中压麻粒岩相退变质温压条件(810~840℃、0.6~1.0GPa),并推测其后期经历过角闪岩相退变质叠加。结合前人的年代学工作,我们认为该基性麻粒岩经历了近等温快速减压的变质历史。  相似文献   
46.
英云闪长岩-奥长花岗岩和花岗闪长岩(简称TTG)是太古宙高级变质地体的主要物质组成,对深入理解早期大陆生长及其机制具有重要的科学意义。目前,人们对其成因过程与机制仍有不同认识。本文以怀安陆块中广泛分布的TTG片麻岩为例,探讨其成因演化和机制。研究区位于华北克拉通中北部,主要由新太古代英云闪长岩及少量奥长花岗岩、花岗闪长岩组成。我们从该区识别出富硅富重稀土和负铕异常的低铝奥长花岗质片麻岩,形成时代与广泛分布的高铝TTG质片麻岩一致(锆石SHRIMP U-Pb年龄2.53Ga)。岩石地球化学数据显示,低铝奥长花岗质片麻岩的主量元素具有富SiO 2(76%~79%),低Al2O3(11.01%~12.61%)、CaO(1.27%~1.59%)、MgO(0.74%~0.24%)和Mg#(18~53)等特征,而广泛分布的高铝TTG岩系的主量元素含量变化大,例如,SiO 2=63%~77%、Al2O3=13.2%~17.77%、CaO=1.8%~5.78%、MgO=0.18%~3.84%和Mg#=35~64。微量元素方面,低铝奥长花岗质片麻岩具有Eu/Eu*负异常(除1个样品为弱正异常1.38外,其余样品分布在0.59~0.44),富集重稀土((La/Yb)N=4~7,(Gd/Yb)N=0.36~1.27),而高铝TTG岩系从弱负铕异常到正异常(Eu/Eu*=0.8~5.35),轻重稀土分馏明显((La/Yb)N=10~103、(Gd/Yb)N=1.97~5.72)。在微量蛛网图中二者的区别除重稀土明显存在区别外,低铝奥长花岗质片麻岩显示出Ba、Sr的相对亏损,而高铝TTG岩系则相反。二者Lu/Hf比值差异明显,低铝奥长花岗质片麻岩变化在0.1~0.16,而高铝TTG岩系变化在0.01~0.07。在Lu/Hf与相关元素以及SiO 2与相关元素哈克图解中,二者差异更加明显,表明它们之间不存在直接的成因联系。综合锆石U-Pb、Lu-Hf同位素特征以及岩石地球化学特征,我们认为低铝奥长花岗质片麻岩是低压下由新太古代新生基性地壳物质低程度部分熔融而成,源区残留矿物相以辉石+斜长石为主,岩浆可能存在过独居石的分异作用。高铝TTG岩系主要由新生基性地壳在相对高压下部分熔融而成,源区残留相以石榴石+辉石+角闪石以及无或少量斜长石为特征。岩浆经历过角闪石和辉石分离结晶作用,铕正异常增大的现象可能与斜长石堆晶有关。本区同时形成高铝和低铝TTG岩系的机制还需深入研究。俯冲机制、地幔柱机制以及二者共同作用等机制均能解释TTG的成因。依据本区同期还形成大量辉长质-闪长质岩浆和稍晚(2.5~2.45Ga)形成的钾质花岗岩类岩浆的侵入活动,我们认为本区高铝和低铝TTG岩系分别来自底侵作用导致的下地壳不同深度不同程度的部分熔融有关。引起底侵作用的机制可能与地幔柱或地幔柱与板块俯冲共同作用有关。  相似文献   
47.
Metapelites, migmatites and granites from the c. 2 Ga Mahalapye Complex have been studied for determining the PT–fluid influence on mineral assemblages and local equilibrium compositions in the rocks from the extreme southwestern part of the Central Zone of the Limpopo high‐grade terrane in Botswana. It was found that fluid infiltration played a leading role in the formation of the rocks. This conclusion is based on both well‐developed textures inferred to record metasomatic reactions, such as Bt ? And + Qtz + (K2O) and Bt ± Qtz ? Sil + Kfs + Ms ± Pl, and zonation of Ms | Bt + Qtz | And + Qtz and Grt | Crd | Pl | Kfs + Qtz reflecting a perfect mobility (Korzhinskii terminology) of some chemical components. The conclusion is also supported by the results of a fluid inclusion study. CO2 and H2O ( = 0.6) are the major components of the fluid. The fluid has been trapped synchronously along the retrograde PT path. The PT path was derived using mineral thermobarometry and a combination of mineral thermometry and fluid inclusion density data. The Mahalapye Complex experienced low‐pressure granulite facies metamorphism with a retrograde evolution from 770 °C and 5.5 kbar to 560 °C and 2 kbar, presumably at c. 2 Ga.  相似文献   
48.
—The Rif belt forms with the Betic Cordilleras an asymmetric arcuate mountain belt (Gibraltar Arc) around the Alboran Sea, at the western tip of the Alpine orogen. The Gibraltar Arc consists of an exotic terrane (Alboran Terrane) thrust over the African and Iberian margins. The Alboran Terrane itself includes stacked nappes which originate from an easterly, Alboran-Kabylias-Peloritani-Calabria (Alkapeca) continental domain, and displays Variscan low-grade and high-grade schists (Ghomarides-Malaguides and Sebtides-Alpujarrides, respectively), shallow water Mesozoic sediments (mainly in the Dorsale Calcaire passive margin units), and infracontinental peridotite slices (Beni Bousera, Ronda). During the Late Cretaceous?-Eocene, the Alboran Terrane was likely located south of a SE-dipping Alpine-Betic subduction (cf. Nevado-Filabride HP-LT metamorphism of central-eastern Betics). An incipient collision against Iberia triggered back-thrust tectonics south of the deformed terrane during the Late Eocene-Oligocene, and the onset of the NW-dipping Apenninic-Maghrebian subduction. The early, HP-LT phase of the Sebtide-Alpujarride metamorphism could be hypothetically referred to the Alpine-Betic subduction, or alternatively to the Apenninic-Maghrebian subduction, depending on the interpretation of the geochronologic data set. Both subduction zones merged during the Early Miocene west of the Alboran Terrane and formed a triple junction with the Azores-Gibraltar transform fault. A westward roll back of the N-trending subduction segment was responsible for the Neogene rifting of the internal Alboran Terrane, and for its coeval, oblique docking onto the African and Iberian margins. Seismic evidence of active E-dipping subduction, and opposite paleomagnetic rotations in the Rif and Betic limbs of the Gibraltar Arc support this structurally-based scenario.  相似文献   
49.
The Chinese Continental Scientific Drilling (CCSD) deep borehole, which reached a depth of 5158 m in the Sulu ultrahigh-pressure (UHP) metamorphic terrane, provides a new window into the deep root of a continent-continent collision belt, and the tectonic processes by which supracrustal material is recycled into the mantle by subduction and then uplifted to the surface. Major research themes of the CCSD project were to: (1) determine the three-dimensional composition, structure and geophysical character of the deep root of this orogenic belt; (2) investigate the nature and timing of the UHP metamorphism; (3) investigate the processes of crust-mantle interaction involved in the formation and exhumation of the UHP rocks; (4) study the process of fluid circulation and mineralization during subduction and exhumation; (5) study the rheological properties of the various rocks during subduction and exhumation; (6) develop and refine dynamic models for deep subduction and exhumation of crustal rocks, and (7) establish a long-term, natural laboratory for the study of present-day crustal dynamics (e.g., stress, strain, fluid activity). The CCSD has developed precise oriented profiles of the main borehole in terms of lithology, geochemistry, oxygen isotopes, zircon SHRIMP U-Pb ages, 40Ar-39Ar ages, deformation, rheology, mineralization, physical properties of the rocks, petrophysical logs, seismic reflections and underground fluids. The present paper summarizes the integrated research results of this project, especially the new findings concerning the deep root of a continent-continent collision.  相似文献   
50.
Based on new evidence the Sulu orogen is divided from south‐east to north‐west into high‐pressure (HP) crustal slice I and ultrahigh‐pressure (UHP) crustal slices II and III. A combined set of mineral inclusions, cathodoluminescence images, U‐Pb SHRIMP dating and in situ trace element and Lu‐Hf isotope analyses was obtained on zircon from orthogneisses of the different slices. Zircon grains typically have three distinct domains that formed during crystallization of the magmatic protolith, HP or UHP metamorphism and late‐amphibolite facies retrogression, respectively: (i) oscillatory zoned cores, with low‐pressure (LP) mineral inclusions and Th/U > 0.38; (ii) high‐luminescent mantles (Th/U < 0.10), with HP mineral inclusions of Qtz + Grt + Arg + Phe + Ap for slice I zircon and Coe + Grt + Phe + Kfs + Ap for both slices II and III zircon; (iii) low‐luminescent rims, with LP mineral inclusions and Th/U < 0.08. Zircon U‐Pb SHRIMP analyses of inherited cores point to protolith ages of 785–770 Ma in all seven orthogneisses. The ages recorded for UHP metamorphism and subsequent retrogression in slice II zircon (c. 228 and c. 215 Ma, respectively) are significantly older than those of slice III zircon (c. 218 and c. 202 Ma, respectively), while slice I zircon recorded even older ages for HP metamorphism and subsequent retrogression (c. 245 and c. 231 Ma, respectively). Moreover, Ar‐Ar biotite ages from six paragneisses, interpreted as dating amphibolite facies retrogression, gradually decrease from HP slice I (c. 232 Ma) to UHP slice II (c. 215 Ma) and UHP slice III (c. 203 Ma). The combined data set suggests decreasing ages for HP or UHP metamorphism and late retrogression in the Sulu orogen from south‐east to north‐west. Thus, the HP‐UHP units are interpreted to represent three crustal slices, which underwent different subduction and exhumation histories. Slice I was detached from the continental lithosphere at ~55–65 km depth and subsequently exhumed while subduction of the underlying slice II continued to ~100–120 km depth (UHP) before detachment and exhumation. Slice III experienced a similar geodynamic evolution as slice II, however, both UHP metamorphism and subsequent exhumation took place c. 10 Myr later. Magmatic zircon cores from two types of orthogneiss in UHP slices II and III show similar mid‐Neoproterozoic crystallization ages, but have contrasting Hf isotope compositions (εHf(~785) = ?2.7 to +2.2 and ?17.3 to ?11.1, respectively), suggesting their formation from distinct crustal units (Mesoproterozoic and Paleoproterozoic to Archean, respectively) during the breakup of Rodinia. The UHP and the retrograde zircon domains are characterized by lower Th/U and 176Lu/177Hf but higher 176Hf/177Hf(t) than the Neoproterozoic igneous cores. The similarity between UHP and retrograde domains indicates that late retrogression did not significantly modify chemical and isotopic composition of the UHP metamorphic system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号