首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2116篇
  免费   274篇
  国内免费   278篇
测绘学   98篇
大气科学   254篇
地球物理   841篇
地质学   1004篇
海洋学   37篇
天文学   5篇
综合类   97篇
自然地理   332篇
  2024年   5篇
  2023年   24篇
  2022年   28篇
  2021年   29篇
  2020年   55篇
  2019年   54篇
  2018年   33篇
  2017年   72篇
  2016年   127篇
  2015年   114篇
  2014年   140篇
  2013年   109篇
  2012年   89篇
  2011年   137篇
  2010年   83篇
  2009年   170篇
  2008年   183篇
  2007年   131篇
  2006年   135篇
  2005年   119篇
  2004年   93篇
  2003年   71篇
  2002年   73篇
  2001年   92篇
  2000年   61篇
  1999年   53篇
  1998年   62篇
  1997年   44篇
  1996年   34篇
  1995年   36篇
  1994年   42篇
  1993年   26篇
  1992年   22篇
  1991年   19篇
  1990年   10篇
  1989年   13篇
  1988年   10篇
  1987年   10篇
  1986年   10篇
  1985年   10篇
  1984年   14篇
  1983年   6篇
  1981年   2篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1954年   1篇
排序方式: 共有2668条查询结果,搜索用时 15 毫秒
101.
102.
Changes in the rate of soil erosion in lake catchments can be identified from changes in the rate of sediment accumulation in lakes. Here we compare recently afforested sites with non-afforested sites in the Galloway area of Southwest Scotland. We show that lakes with non-afforested catchments have slow, constant sediment accumulation rates, whereas lakes with recently afforested catchments have changes in accumulation that parallel the known history of afforestation. For Loch Grannoch the sediment accumulation rate increases from 0.1 cm yr?1 to over 2 cm yr?2 during the disturbance period. Data from L. Skerrow, however, suggest that the rate might decline to predisturbance levels after approximately 10 years as the forest canopy closes and drainage channels stabilize.  相似文献   
103.
1 INTRODUCTION Soil erosion in the foothills of the Hindu Kush-Himalayas (HKH) is considered to be a hot topic in land degradation research in the region (Scherr and Yadav, 1996). The land degradation research has mainly addressed the issue of topsoil los…  相似文献   
104.
This paper presents a case study of runoff and sediment generation under Submediterranean rangeland conditions (Ardèche drainage basin, France). Measurements indicate that on a rough hillslope interrill runoff and sediment are not produced uniformly over the slope surface. It is observed that runoff concentrates immediately in non-permanent interrill flow paths, which under average storm conditions vary in length from 1.0 to 12.5 m. Long interrill flow paths may eventually become permanent. These permanent flow paths, called pre-rills, are introduced as a new source area, and are considered to be the initial stage in the development of rills. Along pre-rills considerable quantities of runoff and sediment are carried away. This study also shows that calculations based on interrill, pre-rill, and rill runoff will only have significance if storm and soil conditions are specified in detail. It is concluded from a correlation analysis between the runoff volume and the amount of soil loss on a storm-by-storm basis that the runoff volume alone cannot explain the amount of sediment that is generated in each source area; soil availability is an additional factor that must be taken into account.  相似文献   
105.
By using the bender and extender elements tests, the travel times of the shear (S) and the primary (P) waves were measured for dry sand samples at different relative densities and effective confining pressures. Three methods of interpretations, namely, (i) the first time of arrival, (ii) the first peak to peak, and (iii) the cross-correlation method, were employed. All the methods provide almost a unique answer associated with the P-wave measurements. On contrary, a difference was noted in the arrival times obtained from the different methods for the S-wave due to the near field effect. The resonant column tests in the torsional mode were also performed to check indirectly the travel time of the shear wave. The study reveals that as compared to the S-wave, it is more reliable to depend on the arrival times’ measurement for the P-wave.  相似文献   
106.
This study presents a semi-empirical model for quantifying the reduction in the mechanical strength of bedrock beneath actively eroding soil-mantled hillslopes. The strength reduction of bedrock controls the rate of physical disintegration of saprolite, which supplies fresh minerals that are then exposed to intense chemical weathering in soil sections. To determine the values of parameters employed in the model requires knowledge of the denudation rate of the hillslope, the thickness of the soil and saprolite layers, the strength of fresh bedrock, and the threshold strength for physical erosion at the uppermost face of the saprolite. These parameters can be obtained from cosmogenic nuclide analyses for quartz samples from the soil–saprolite boundary and basic field- and laboratory-based investigations. Further testing of the model within a diverse range of climatic, tectonic, and lithologic environments is likely to provide clues to the mechanisms responsible for local and regional variations in the rates of soil production and chemical weathering upon hillslopes.  相似文献   
107.
Equilibrium and disequilibrium degassing of a volatile phase from a magma of K-phonolitic composition was investigated to assess its behavior upon ascent. Decompression experiments were conducted in Ar-pressurized externally heated pressure vessels at superliquidus temperature (1050 °C), in the pressure range 10–200 MPa using pure water as fluid phase. All experiments were equilibrated at 200 MPa and then decompressed to lower pressures with rates varying from 0.0028 to 4.8 MPa/s. Isobaric saturation experiments were performed at the same temperature and at 900–950 °C to determine the equilibrium water solubility in the pressure range 30–250 MPa. The glasses obtained from decompression experiments were analyzed for their dissolved water content, vesicularity and bubble size distribution. All decompressed samples presented a first event of bubble nucleation at the capsule–melt interface. Homogeneous bubble nucleation in the melt only occurred in fast-decompressed experiments (4.8 and 1.7 MPa/s), for ΔP ≅ 100 MPa. For these decompression rates high water over-saturations were maintained until a rapid exsolution was triggered at ΔP > 150 MPa. For slower rates (0.0028, 0.024, 0.17 MPa/s) the degassing of the melt took place by diffusive growth of the bubbles nucleating at the capsule–melt interface. This process sensibly reduced water over-saturation in the melt, preventing homogeneous nucleation to occur. For decompression rates of 0.024 and 0.17 MPa/s low water over-saturations were attained in the melt, gradually declining toward equilibrium concentrations at low pressures. A near-equilibrium degassing path was observed for a decompression rate of 0.0028 MPa/s. Experimental data combined with natural pumice textures suggest that both homogeneous and heterogeneous bubble nucleations occurred in the phonolitic magma during the AD 79 Vesuvius plinian event. Homogeneous bubble nucleation probably occurred at a depth of ∼ 3 km, in response to a fast decompression of the magma during the ascent.  相似文献   
108.
Recent major seismic events, such as the Chi-Chi (1999) and the Wenchuan (2008) earthquakes occurred in Taiwan and China, have offered a variety of case histories on the performance of structures subjected to reverse faulting–induced deformation. A novel faulting mitigation method has recently been proposed, introducing a soft deformable wall barrier in order to divert the fault rupture away from the structure. This can be materialized by constructing a thick diaphragm-type soil bentonite wall (SBW) between the structure and the fault rupture path. The paper investigates the key parameters in designing such a SBW, aiming to mitigate the fault rupture hazard on shallow foundations. The paper employs a thoroughly validated finite element analysis methodology to explore the efficiency of a weak SBW barrier in protecting slab foundations from large tectonic deformation due to reverse faulting. A dimensional analysis is conducted in order to generalize the validity of the derived conclusions. The dimensionless formulation is then used to conduct a detailed parametric study, exploring the effect of SBW thickness w/H, depth HSBWl/H, and shear strength τsoil/τSBW, as well as the bedrock fault offset h/H, foundation surcharge load q/ρgB, and fault outcrop location s/B. It is shown that the wall thickness, depth, and shear strength should be designed on the basis of the magnitude of the bedrock fault offset, the location of the fault relative to the structure, and the shear strength of the soil. The efficiency of the weak barrier is improved using lower strength and stiffness material compared to the alluvium. A simplified preliminary design methodology is proposed, and presented in the form of a flowchart.  相似文献   
109.
A field study evaluating wetted radius (Wr), downward depth (Dd), and upward movement (Um) under different emitter discharges and lateral depths was conducted. Four emitter discharges (2, 4, 8, and 16 L/h) and four lateral depths (0, 10, 20, and 30 cm) were tested in a clay loam soil. Relationships were found between the emitter discharge and lateral depth versus Wr, Dd, and Um. Wetting area at the surface occurs under different emitter discharges and lateral depths except at 30 cm lateral depth. At lateral depth of 0 and 10 cm, Wr and emitter discharge were positively correlated. The Dd was not affected by emitter discharge except for laterals installed at 20 cm depth. At 30 cm lateral depth, the correlations between each of Wr, Um, and Dd with emitter discharge were poor. The ratios of Wr/Dd and Um/Dd, with respect to emitter position, were less than unity over different emitter discharges and lateral depths. These results shed some light on the design of subsurface drip irrigation scheme so that the spacing between emitters should be determined based on the lateral depths and discharge of emitters. Evaporation losses were negligible for the 30‐cm‐lateral depth since the upward moisture movement has not reached the soil surface area at all discharge rates tested in the study.  相似文献   
110.
One mechanism by which biochar application enhances soil nutrient availability is through direct nutrients release from biochar. However, factors controlling the release processes are poorly understood. In this study, the effects of pH, biochar to water ratio, temperature, ionic strength, and equilibration time on the release of PO, NO, NH, K+, Na+, Ca2+, and Mg2+ from biochar were evaluated in simulated experiments. The release of PO, K+, Ca2+, and Mg2+ was significantly affected by extraction pH, suggesting that their release from biochar was pH dependent or an H+‐consuming process. Correlation analysis indicated that PO and Ca2+, PO and Mg2+, and Ca2+ and Mg2+ were co‐solubilized with increasing soil acidity. To a lesser extent, the recovery of the nutrients was also affected by the ratio of biochar to water: more nutrients were soluble with more water supply. In contrast, the release of Na was not affected by pH while the concentration increased with decreasing biochar to water ratio. Meanwhile, other factors (temperature, ionic strength, and equilibration time) had less effect on nutrient release from biochar. Under the influence of pH, the patterns of NO and PO release from biochar were different: extractable NO concentration was not affected by the pH but more PO was released in strongly acidic conditions. Our data suggested that P was mainly retained in inorganic forms while N was in organic forms in biochar. We conclude that environmental factors have marked influences on nutrients release from biochar.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号