首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   547篇
  免费   96篇
  国内免费   207篇
测绘学   13篇
大气科学   60篇
地球物理   89篇
地质学   400篇
海洋学   152篇
天文学   4篇
综合类   30篇
自然地理   102篇
  2024年   1篇
  2023年   10篇
  2022年   26篇
  2021年   22篇
  2020年   33篇
  2019年   26篇
  2018年   28篇
  2017年   14篇
  2016年   13篇
  2015年   12篇
  2014年   26篇
  2013年   29篇
  2012年   34篇
  2011年   29篇
  2010年   25篇
  2009年   26篇
  2008年   36篇
  2007年   46篇
  2006年   42篇
  2005年   34篇
  2004年   46篇
  2003年   29篇
  2002年   31篇
  2001年   24篇
  2000年   28篇
  1999年   17篇
  1998年   30篇
  1997年   25篇
  1996年   15篇
  1995年   9篇
  1994年   9篇
  1993年   14篇
  1992年   10篇
  1991年   13篇
  1990年   8篇
  1989年   7篇
  1988年   9篇
  1987年   6篇
  1986年   6篇
  1985年   2篇
排序方式: 共有850条查询结果,搜索用时 31 毫秒
31.
In situ seismic attenuationQ−1logs are derived from borehole velocity profiles and reveal sharp boundaries between morphologies of the extrusive volcanic layers in intermediate- and slow-spreading oceanic crust.Q−1logs are calculated from the scattering attenuation associated with vertical velocity heterogeneity in Ocean Drilling Program Holes 504B and 896A and in Hole 395A, located in 5.9–7.3 Ma crust on the Pacific and Atlantic plates, respectively. Our results strongly tie crustal properties to seismic measurables and observed geological structures: we find that the scattering attenuation can be used to identify the extrusive volcanic sequence because it is closely related to changes in the degree of vertical heterogeneity. We interpret a distinct decrease in the Q−1log at the transition below the extrusive volcanic layer to correspond with the seismic layer 2A/2B boundary. The boundary is located at 465 m depth below the sea floor in both Hole 395A and 504B, although this is likely to be a coincidence of the sediment thickness at these sites. Layer 2A is estimated to be approximately 150 m thick in Hole 504B and > 300 m thick in Hole 395A. Cyclic sequences of high-porosity pillows and low-porosity massive units in the uppermost 100 m of volcanics in Hole 395A result in large velocity heterogeneities which cause > 5 times more attenuation in this layer than in Hole 504B. In Hole 896A, by contrast, fewer pillows, more massive flows, and a greater volume of carbonate veins decrease the velocity heterogeneity and attenuation significantly over only 1 km distance from Hole 504B. We conclude that the attenuation in the extrusive volcanics of the ocean crust is largely controlled by variation in local heterogeneity and morphology as well as by subsequent hydrothermal alteration. The observed differences inQ−1profiles and layer 2A thickness at these sites may be attributed to variations in the volume and duration of volcanic activity at mid-ocean spreading centers for these Pacific and Atlantic ridge segments.  相似文献   
32.
洋岛,海山碳酸盐岩的沉积特征及其古地理意义   总被引:7,自引:1,他引:7  
高出水面的洋岛和潜伏水下的海山普遍存在于现代地球表面的各大洋中,地质历史中存在的古洋岛和古海山也逐渐为人们所认识。笔者从地形特征,沉积学特征,成岩作用和生物学特征几个方面对洋岛,海山进行了分析,洋岛,海山通常具有洋岛型火山岩基底和碳酸盐盖层的双层式地层结构,具有低分异度,探讨了古洋岛,古海山的鉴别对于再造古海洋,古地理格局的现实意义。  相似文献   
33.
张抗 《地质通报》2004,23(3):208-213
对板块说应持分析态度,既充分肯定它的创见,又要看到其不足。张文佑倡导的断块说强调地质演化中的陆洋地壳转化,即拉张造洋、挤压造陆。近年来提出的开合说,继承了板块说、断块说和新地槽-地台说的合理内核。笔者认为,断块-开合大地构造说是中国大地构造研究中有代表性的思潮。本文概括了其基本观点,强调了开合中的多模式、多旋回和非封闭性、不可逆性。  相似文献   
34.
Being a composite collisional orogen between North China and South China blocks, the Qinling orogenic belt is the key to understand the composite combination, prolonged evolutionary history and their continental dynamics. The main suture between north and south Qinling, called Shangdan suture zone (SDSZ), had been studied in detail for about twenty years. Recently, another suture zone, called Mianl黣 suture zone (MLSZ), has been identified in the Qinling Mountains. It is characterized b…  相似文献   
35.
The fault-bounded Bolívar Ultramafic Complex (BUC) onthe eastern fringes of the Western Cordillera of Colombia wastectonically accreted onto the western coast of South Americain the late Cretaceous–early Tertiary, along with pillowbasalts of the Caribbean–Colombian Oceanic Plateau (CCOP).The complex consists of a lower sequence of ultramafic cumulates,successively overlain by layered and isotropic gabbroic rocks.The gabbros grade into, and are intruded by, mafic pegmatitesthat consist of large magnesiohornblende and plagioclase crystals.These pegmatites yield a weighted mean 40Ar–39Ar step-heatingage of 90·5 ± 0·9 Ma and thus coincidewith the timing of peak CCOP volcanism. The chemistry of theBUC is not consistent with a subduction-related origin. However,the similarity in Sr–Nd–Pb–Hf isotopes betweenthe CCOP and the BUC, in conjunction with their indistinguishableages, suggests that the BUC is an integral part of the plume-derivedCCOP. The parental magmas of the Bolívar complex wereprobably hydrous picrites that underwent 20–30% crystallization.The residual magmas from this fractionation contained  相似文献   
36.
Lord Howe Island is a small eroded remnant of a Late Miocene shield volcano. A fringing coral reef dissipates wave energy along a portion of the shoreline, but the remainder of the coast is rugged with spectacular high basaltic sea cliffs. This paper investigates the evolution of talus slopes that occur beneath the loftiest cliffs, and places this analysis within the context of a longer history of island planation that has resulted in a wide truncated shelf around the island. During the Last Glacial, when the sea level was lower than at present, talus slopes accumulated around the extent of the island's cliffed coast because material eroded from cliffs by subaerial processes could not be removed by marine processes. The survival of these slopes during the Holocene has depended on a balance achieved between rates of subaerial and marine erosion. This balance is fundamentally influenced by cliff height, as cliffs higher than 200 m are plunging or veneered by talus slopes, whereas lower cliffs have erosional shore platforms. On comparison with published erosion rates from inland basalt scarps it appears that marine processes may account for over 90 per cent of the total cliff retreat that has occurred at Lord Howe Island, yet contemporary coastal morphology attests to the significance of subaerial processes in recent times. It is likely that marine cliffing was very rapid soon after volcanism ceased, but rates of erosion decreased through time as wave energy became increasingly attenuated across a widening planation surface, and as increasing cliff heights yielded greater quantities of talus that provided protection from rapid marine erosion.  相似文献   
37.
38.
39.
40.
Jurassic age volcanic rocks of the Stonyford volcanic complex(SFVC) comprise three distinct petrological groups based ontheir whole-rock geochemistry: (1) oceanic tholeiites; (2) transitionalalkali basalts and glasses; (3) high-Al, low-Ti tholeiites.Major and trace element, and Sr–Nd–Pb isotopic dataindicate that the oceanic tholeiites formed as low-degree partialmelts of normal mid-ocean ridge basalt (N-MORB)-source asthenospheresimilar in isotope composition to the East Pacific Rise today;the alkalic lavas were derived from an enriched source similarto that of E-MORB. The high-Al, low-Ti lavas resemble second-stagemelts of a depleted MORB-source asthenosphere that formed bymelting spinel lherzolite at low pressures. Trace element systematicsof the high-Al, low-Ti basalts show the influence of an enrichedcomponent, which overprints generally depleted trace elementcharacteristics. Tectonic discrimination diagrams show thatthe oceanic tholeiite and alkali suites are similar to present-daybasalts generated at mid-oceanic ridges. The high-Al, low-Tisuite resembles primitive arc basalts with an enriched, alkalibasalt-like overprint. Isotopic data show the influence of recycledcomponents in all three suites. The SFVC was constructed ona substrate of normal Coast Range ophiolite in an extensionalforearc setting. The close juxtaposition of the MORB-like olivinetholeiites with alkali and high-Al, low-Ti basalts suggestsderivation from a hybrid mantle source region that includedMORB-source asthenosphere, enriched oceanic asthenosphere, andthe depleted supra-subduction zone mantle wedge. We proposethat the SFVC formed in response to collision of a mid-oceanridge spreading center with the Coast Range ophiolite subductionzone. Formation of a slab window beneath the forearc duringcollision allowed the influx of ridge-derived magmas or themantle source of these magmas. Continued melting of the previouslydepleted mantle wedge above the now defunct subduction zoneproduced strongly depleted high-Al, low-Ti basalts that werepartially fertilized with enriched, alkali basalt-type meltsand slab-derived fluids. KEY WORDS: CRO; oceanic basalts; California  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号