首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   1篇
  国内免费   30篇
地球物理   1篇
地质学   73篇
  2023年   7篇
  2022年   4篇
  2021年   4篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   1篇
  2011年   3篇
  2009年   4篇
  2008年   6篇
  2007年   9篇
  2006年   14篇
  2005年   4篇
  2004年   2篇
  2002年   1篇
  1998年   2篇
  1997年   1篇
排序方式: 共有74条查询结果,搜索用时 468 毫秒
61.
The origin of bedded iron-ore deposits developed in greenstone belt-hosted (Algoma-type) banded iron formations of the Archean Pilbara Craton has largely been overlooked during the last three decades. Two of the key problems in studying these deposits are a lack of information about the structural and stratigraphic setting of the ore bodies and an absence of geochronological data from the ores. In this paper, we present geological maps for nearly a dozen former mines in the Shay Gap and Goldsworthy belts on the northeastern margin of the craton, and the first U-Pb geochronology for xenotime intergrown with hematite ore. Iron-ore mineralisation in the studied deposits is controlled by a combination of steeply dipping NE- and SE-trending faults and associated dolerite dykes. Simultaneous dextral oblique-slip movement on SE-trending faults and sinistral normal oblique-slip movement on NE-trending faults during initial ore formation are probably related to E–W extension. Uranium–lead dating of xenotime from the ores using the sensitive high-resolution ion microprobe (SHRIMP) suggests that iron mineralisation was the cumulative result of several Proterozoic hydrothermal events: the first at c. 2250 Ma, followed by others at c. 2180 Ma, c. 1670 Ma and c. 1000 Ma. The cause of the first growth event is not clear but the other age peaks coincide with well-documented episodes of orogenic activity at 2210–2145 Ma, 1680–1620 Ma and 1030–950 Ma along the southern margin of the Pilbara Craton and the Capricorn Orogen farther south. These results suggest that high-grade hematite deposits are a product of protracted episodic reactivation of a structural architecture that developed during the Mesoarchean. The development of hematite mineralisation along major structures in Mesoarchean BIFs after 2250 Ma implies that fluid infiltration and oxidative alteration commenced within 100 myr of the start of the Great Oxidation Event at c. 2350 Ma.  相似文献   
62.
郑常青  徐学纯  M.Enami  T.Kato 《世界地质》2005,24(3):236-242
新疆阿尔泰地区的红柱石-矽线石型递增变质带,由绿泥石-黑云母带、黑云母-石榴石带、石榴石-十字石带、十字石-红柱石带和矽线石带组成;递增变质作用峰期温度、压力分别为T=580~680℃、P=4.0~5.1kbar;递增变质作用形成的变质岩中含有丰富的独居石副矿物,而且Th-U-Pb含量比较高,适合电子探针独居石化学法定年。依据电子探针独居石Th-U-Pb化学法(CHIME法)定年,变质时代为(262±10)~(264±22)Ma。表明红柱石-矽线石型递增变质带形成于二叠纪中期,为古亚洲洋闭合时间提供了直接的年代学依据。  相似文献   
63.
The last (decompression) stages of the metamorphic evolution can modify monazite microstructure and composition, making it difficult to link monazite dates with pressure and temperature conditions. Monazite and its breakdown products under fluid‐present conditions were studied in micaschist recovered from the cuttings of the Pontremoli1 well, Tuscany. Coronitic microstructures around monazite consist of concentric zones of apatite + Th‐silicate, allanite and epidote. The chemistry and microstructure of the monazite grains, which preserve a wide range of chemical dates ranging from Upper Carboniferous to Tertiary times, suggest that this mineral underwent a fluid‐mediated coupled dissolution–reprecipitation and crystallization processes. Consideration of the chemical zoning (major and selected trace elements) in garnet, its inclusion mineralogy (including xenotime), monazite breakdown products and phase diagram modelling allow the reaction history among accessory minerals to be linked with the reconstructed P–T evolution. The partial dissolution and replacement by rare earth element‐accessory minerals (apatite–allanite–epidote) occurred during a fluid‐present decompression at 510 ± 35 °C. These conditions represent the last stage of a metamorphic history consisting of a thermal metamorphic peak at 575 °C and 7 kbar, followed by the peak pressure stage occurring at 520 °C and 8 kbar. An anticlockwise P–T path or two clockwise P–T loops can fit the above P–T constraints. The former path may be related to a context of late Variscan strike‐slip‐dominated exhumation with minor Tertiary (Alpine‐related) reworking and fluid infiltration, while the latter requires an Oligocene–Miocene fluid‐present tectono‐metamorphic overprint on the Variscan paragenesis.  相似文献   
64.
147Sm-143Nd放射性同位素体系在地球科学研究中得到了广泛的应用,经典的同位素稀释-热表面电离质谱法(ID-TIMS)一直是Sm-Nd同位素高精度测定的基准技术,但具有耗时长、成本高、样品需求量大等缺点,并且难以揭示微观尺度单矿物所蕴含的地球化学信息。近年来兴起的微区原位分析,具有简单、快速、高空间分辨率的特点,可以从微米尺度示踪岩浆和热液的起源及演化过程。本文通过同时测定Sm和Nd同位素质量分馏系数,实现144Sm对144Nd干扰的准确校正,获得了人造玻璃、磷灰石、榍石、独居石等几种不同基体标准样品(NIST610、Durango、MAD-2、BLR-1、117531)精确的143Nd/144Nd比值,与推荐值在误差范围内一致。然而,由于Sm和Nd元素性质的差异,在激光剥蚀和质谱电离过程中会产生明显的元素分馏,导致147Sm/144Nd很难进行精确校正,本文通过在进样系统中引入液态气溶胶,有效克服了基体效...  相似文献   
65.
J.L. Paquette  M. Tiepolo   《Chemical Geology》2007,240(3-4):222-237
Monazite [(LREE)PO4], a common accessory mineral in magmatic and metamorphic rocks, is complementary to zircon in U–Th–Pb geochronology. Because the mineral can record successive growth phases it is useful for unravelling complex geological histories. A high spatial resolution is required to identify contrasted age domains that may occur at the crystal-scale. Bulk mineral techniques such as ID-TIMS, applied to single monazite grains recording multiple overgrowths or isotope resetting can result in partly scattered discordant analytical points that produce inaccurate intercept ages. Laser ablation (LA)-ICPMS has been demonstrated to be a useful technique for U–Th–Pb dating of zircons, and this study tests its analytical capabilities for dating monazite. A sector field high resolution ICPMS coupled with a 193 nm ArF excimer laser ablation microprobe is capable of achieving a high spatial resolution and producing stable and reliable isotope measurements.

The U–Th–Pb systematic was applied to monazite grains from several samples: a lower Palaeozoic lens from high-grade terrains in Southern Madagascar, Neogene hydrothermal crystals from the Western Alps, a Palaeoproterozoic very high temperature granulite from central Madagascar and a Variscan leucogranite from Spain, directly on a polished thin section. The major aim was to compare and/or reproduce TIMS and EMP ages of monazite from a variety of settings and ages. The three independent 206Pb/238U, 207Pb/235U and 208Pb/232Th ratios and ages were calculated. Isotope fractionation effects (mass bias, laser induced fractionation) were corrected using a chemically homogeneous and U–Pb concordant monazite as external standard.

This study demonstrates that excimer laser ablation (ELA)-ICPMS allows U–Th–Pb dating of monazite with a high level of repeatability, accuracy and precision as well as rapidity of analysis. A spatial resolution almost comparable to that of EMP in terms of crater width (5 μm) produced precise 208Pb/232Th, 206Pb/238U and 207Pb/235U ratios for dating Palaeozoic to Precambrian monazites. The advantages of (ELA)-ICPMS isotope dating are precision, accuracy and the ability to detect discordance. In the case of late Miocene hydrothermal monazites from the Alps, a larger spot size of 25 μm diameter is required, and precise and accurate ages were obtained only for 208Pb/232Th systematics. Results from the Variscan granite show that in situ U–Th–Pb dating of monazites with (ELA)-ICPMS is possible using a 5 μm spot directly on thin sections, so that age data can be placed in a textural context.  相似文献   

66.
河北康保地区花岗岩独居石电子探针定年   总被引:5,自引:1,他引:5  
已有年代学研究表明,康保地区西阿公单元含石榴二长花岗岩形成于中元古代。我们采用近年来新发展的独居石电子探针Th-U-总Pb定年方法对康保地区西阿公单元十硼地区变质细粒含石榴二长花岗岩样品中的独居石开展了电子探针进行测年分析,计算方法为Suzuki和Adachi等提出的方法。独居石年龄峰值分别为252Ma,265Ma,281Ma和322Ma,表明西阿公单元含石榴二长花岗岩形成时代不是中元古代,其侵位时间应为二叠纪。这一新的年代学结果与Sengor和王荃推测的华北板块与西伯利亚板块"晚二叠世碰撞"的模式一致。康保地区西阿公单元含石榴二长花岗岩具过铝花岗岩特征,代表古蒙古洋消失,是华北板块与西伯利亚板块碰撞造山阶段多期岩浆作用的结果,为确定古亚洲洋的闭合时间提供了重要依据。  相似文献   
67.
Th-U-Pb系统数据不协调是独居石电子探针化学定年(EPMA CHIME Dating)中一种很常见的问题。独居石矿物产生数据不协调的主要原因包括:1)蚀变或重结晶造成的铅丢失;2)不同年龄域在空间上的重叠或者存在于很小颗粒上的小年龄域。独居石EPMA年龄必大于U等于0时的极端情况给出的值,即当U为0时,EPMA CHIME年龄给出的是~(208)Pb/~(232)Th年龄,这是测量区域内最老年龄的下限。当Th为0时,EPMA CHIME年龄值介于~(206)Pb/~(238)U和~(207)Pb/~(235)U年龄值之间,这是EPMA法所能得到的最老年龄的上限。分析表明,当独居石EPMA数据出现不协调时,传统等时线方法计算的年龄值误差较大。本文提出了一种处理数据不协调情况下的优化算法。该算法考虑了测量误差,并根据剩余铀的总量剔出大的离散数据。利用已公开的数据进行算法对比的结果表明,本文提出的优化算法计算结果可靠。  相似文献   
68.
Proton microprobe for chemical dating of monazite   总被引:1,自引:1,他引:0  
Although quantitative chemical analysis by proton microprobe has become an established technique, it has been rarely applied to problems in the earth sciences. The method, having lower detection limit (better than 10 ppm for U, Th and Pb) and higher spatial resolution than electron microprobe (typically 1 μm vs 3 μm), can be successfully used in geology. Here, we present a procedure for the chemical dating of monazite, (REE)PO4, by proton microprobe. The procedure is compared with electron probe microanalysis technique (EPMA).  相似文献   
69.
The Higo Complex of west-central Kyushu, western Japan is a 25 km long body of metasedimentary and metabasic lithologies that increase in metamorphic grade from schist in the north to migmatitic granulite in the south, where granitoids are emplaced along the southern margin. The timing of granulite metamorphism has been extensively investigated and debated. Previously published Sm–Nd mineral isochrons for garnet-bearing metapelite yielded ca.220–280 Ma ages, suggesting high-grade equilibration older than the lower grade schist to the north, which yielded ca.180 Ma K–Ar muscovite ages. Ion and electron microprobe analyses on zircon have yielded detrital grains with rim ages of ca.250 Ma and ca.110 Ma. Electron microprobe ages from monazite and xenotime are consistently 110–130 Ma. Two models have been proposed: 1) high-grade metamorphism and tectonism at ca.115 Ma, with older ages attributed to inheritance; and 2) high-grade metamorphism at ca.250 Ma, with resetting of isotopic systems by contact metamorphism at ca.105 Ma during the intrusion of granodiorite. These models are evaluated through petrographic investigation and electron microprobe Th–U–total Pb dating of monazite in metapelitic migmatites and associated lithologies. In-situ investigation of monazite reveals growth and dissolution features associated with prograde and retrograde stages of progressive metamorphism and deformation. Monazite Th–U–Pb isochrons from metapelite, diatexite and late-deformational felsic dykes consistently yield ca.110–120 Ma ages. Earlier and later stages of monazite growth cannot be temporally resolved. The preservation of petrogenetic relationships, coupled with the low diffusion rate of Pb at < 900 °C in monazite, is strong evidence for timing high-temperature metamorphism and deformation at ca.115 Ma. Older ages from a variety of chronometers are attributed to isotopic disequilibrium between mineral phases and the preservation of inherited and detrital age components. Tentative support is given to tectonic models that correlate the Higo terrane with exotic terranes between the Inner and Outer tectonic Zones of southwest Japan, possibly derived from the active continental margin of the South China Block. These terranes were dismembered and translated northeastwards by transcurrent shearing and faulting from the beginning to the end of the Cretaceous Period.  相似文献   
70.
Two stages of granitic magmatism occurred during the Pan-African evolution of the Kerala Khondalite Belt (KKB) in southern India. Granitic gneisses were derived from porphyritic granites, which intruded prior to the main stage of deformation and peak-metamorphism. Subsequently, leucogranites and leucotonalites formed during fluid-absent melting and intruded the gneiss sequences. Monazites from granitic gneisses, leucogranites and a leucotonalite were investigated by conventional U-Pb and electron microprobe dating in order to distinguish the different stages of magma emplacement. U-Pb monazite dating yielded a wide range of ages between 590–520 Ma which are interpreted to date high-grade metamorphism rather than magma emplacement. The results of this study indicate that the KKB experienced protracted heating (>50 Ma) at temperatures above 750–800 °C during the Pan-African orogeny. The tectonometamorphic evolution of the study area is comparable to southern Madagascar which underwent a similar sequence of events earlier than the KKB. The results of this study further substantiate previous assertions that the timing of high-grade metamorphism in East Gondwana shifted from west to east during the Late Proterozoic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号