首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   1篇
  国内免费   30篇
地球物理   1篇
地质学   73篇
  2023年   7篇
  2022年   4篇
  2021年   4篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   1篇
  2011年   3篇
  2009年   4篇
  2008年   6篇
  2007年   9篇
  2006年   14篇
  2005年   4篇
  2004年   2篇
  2002年   1篇
  1998年   2篇
  1997年   1篇
排序方式: 共有74条查询结果,搜索用时 56 毫秒
41.
Deformational, metamorphic, monazite age and fabric data from Rengali Province, eastern India converge towards a multi-scale transpressional deformational episode at ca. 498–521 Ma which is linked with the latest phase of tectonic processes operative at proto-India-Antarctica join. Detailed sector wise study on mutual overprinting relationships of macro-to microstructural elements suggest that deformation was regionally partitioned into fold-thrust dominated shortening zones alternating with zones of dominant transcurrent deformation bounded between the thrust sense Barkot Shear Zone in the north and the dextral Kerajang Fault Zone in the south. The strain partitioned zones are further restricted between two regional transverse shear zones, the sinistral Riamol Shear Zone in the west and the dextral Akul Fault Zone in the east which are interpreted as synthetic R and antithetic R' Riedel shear plane, respectively. The overall structural disposition has been interpreted as a positive flower structure bounded between the longitudinal and transverse faults with vertical extrusion and symmetric juxtaposition of mid-crustal amphibolite grade basement gneisses over low-grade upper crustal rocks emanating from the central axis of the transpressional belt.  相似文献   
42.
Instrumental and spectral characteristics germane to chemical dating of monazite have been tested using the Cameca SX-100 at Rensselaer Polytechnic Institute. Statistical analysis demonstrates that, for trace element analysis, equal counting time on peak and background is required for optimal statistical precision, thus rendering impractical the procedure of fitting the entire spectrum to obtain background values. Energy shifts require shifting the detector voltage window between peak and background positions, and it is concluded that the differential auto PHA mode works optimally for this.Analyses of Pb-free phosphates, silicates, and oxides are used to measure spectral interferences with the PbMα peak and background positions. Backgrounds were modeled using both linear and exponential fits. It was found that the difference in background counts using the two fits varies with each of the five spectrometers examined, and that the high-pressure (3 bar) detectors show larger differences in exponential vs. linear peak-minus-background (P-B) values than the low-pressure (1 bar) detectors. In addition, every spectrometer requires a unique correction for every major element in monazite. An analytical protocol is presented that incorporates these results. This protocol was applied to several monazite standards to determine inter-spectrometer variability, and spectrometer reproducibility from session to session. It was found that the difference in composition (and age) between spectrometers on identical spots exceeds the 2 sigma standard error of the mean of composition (or age) on either spectrometer. This means that (a) additional sources of error beyond the counting statistics exist between spectrometers; (b) the precision of microprobe ages cannot be continuously improved by additional counting; and (c) the minimum realistic precision is on the order of ± 2–3% for monazites with around 1500–2000 ppm total Pb, or an additional absolute uncertainty of 20–50 ppm Pb.  相似文献   
43.
The origin of bedded iron-ore deposits developed in greenstone belt-hosted (Algoma-type) banded iron formations of the Archean Pilbara Craton has largely been overlooked during the last three decades. Two of the key problems in studying these deposits are a lack of information about the structural and stratigraphic setting of the ore bodies and an absence of geochronological data from the ores. In this paper, we present geological maps for nearly a dozen former mines in the Shay Gap and Goldsworthy belts on the northeastern margin of the craton, and the first U-Pb geochronology for xenotime intergrown with hematite ore. Iron-ore mineralisation in the studied deposits is controlled by a combination of steeply dipping NE- and SE-trending faults and associated dolerite dykes. Simultaneous dextral oblique-slip movement on SE-trending faults and sinistral normal oblique-slip movement on NE-trending faults during initial ore formation are probably related to E–W extension. Uranium–lead dating of xenotime from the ores using the sensitive high-resolution ion microprobe (SHRIMP) suggests that iron mineralisation was the cumulative result of several Proterozoic hydrothermal events: the first at c. 2250 Ma, followed by others at c. 2180 Ma, c. 1670 Ma and c. 1000 Ma. The cause of the first growth event is not clear but the other age peaks coincide with well-documented episodes of orogenic activity at 2210–2145 Ma, 1680–1620 Ma and 1030–950 Ma along the southern margin of the Pilbara Craton and the Capricorn Orogen farther south. These results suggest that high-grade hematite deposits are a product of protracted episodic reactivation of a structural architecture that developed during the Mesoarchean. The development of hematite mineralisation along major structures in Mesoarchean BIFs after 2250 Ma implies that fluid infiltration and oxidative alteration commenced within 100 myr of the start of the Great Oxidation Event at c. 2350 Ma.  相似文献   
44.
EPMA U-Th-Pbtotal dating in U- and Th bearing minerals (e.g., monazite, zircon, and xenotime) is a low-cost and reliable technique used for retrieving age information from detrital, diagenetic and low to high-T metamorphic, as well as magmatic rocks. Although, the accuracy on measured ages obtained using EPMA is considered to be poor compared to isotopic ages, the superior spatial resolution, ability to integrate textural and age information by in-situ measurement, lack of sample damage and easier and cheaper data generation in EPMA make chemical dating a very valuable tool to decipher diverse petrological processes.This contribution presents an improved analytical protocol to obtain precise estimates of U, Th and Pb concentrations in xenotime. Results were tested on monazite standard (Moacyr pegmatite, Brazil; TIMS age: 487 ± 1 Ma) as the reference material. The proposed analytical protocol has been successfully applied to achieve an analytical uncertainty of less than 10% in U, Th and Pb measurements in xenotime. The protocol was further used to resolve polygenetic xenotime ages (ca. 1.82, 1.28 and 0.93 Ga) in metapelite samples from the Mangalwar Complex, Northwestern India. Monazites in the same samples were also analyzed and found to preserve the two younger ages (i.e., ca. 1.28 and 1.0 Ga). The obtained ages from the xenotime and monazite very well corroborate with the earlier published ages from the area validating the proposed analytical protocol.  相似文献   
45.
A vast supracrustal belt of khondalites (granulite facies metapelites) occur along the northern margin of the North China Craton. We report here for the first time spinel + quartz equilibrium assemblage from these rocks in two textural settings: (1) high ZnO (up to 14.47 wt.%) spinel with quartz as inclusions within garnet porphyroblasts defining pressure above 12 kbar and temperature of 900 °C; and (2) low ZnO (down to 1.2 wt.%) spinel in association with quartz in the matrix assemblage formed during peak ultrahigh-temperature conditions (ca. 975 °C and 9 kbar). We present a unique case of decompression where the metamorphic conditions of the rocks traversed mostly through the spinel + quartz (extended) stability field. Monazite grains in textural association with both types of spinel + quartz textures were analysed for age determination, and the data define two age peaks at 1927 ± 11 Ma and 1819 ± 11 Ma. Since the peak thermal regime of the khondalites was close to or exceeded the theoretical closure temperature of Pb in monazite, we infer the 1819 ± 11 Ma age as the timing of ultrahigh-temperature event in this craton. Our data lend support to the idea of ca. 1.9–1.8 Ga E–W collisional orogen at the northern margin of the North China Craton. We correlate the extreme crustal metamorphism with tectonics associated with the assembly of the North China Craton within the Columbia supercontinent.  相似文献   
46.
汤倩  孙晓明  徐莉  翟伟  梁金龙  梁业恒  沈昆 《岩石学报》2006,22(7):1927-1932
CCSD主孔榴辉岩等UHP岩石石英脉中存在团块状到不规则脉体状的磷灰石集合体,显微镜下观察发现其中存在四种出溶物:磁铁矿和赤铁矿的连生体、赤铁矿、独居石和锶重晶石;出溶物的长轴和生长方向均基本平行于磷灰石之C轴,显示它们可能是基本同时出溶的。其中独居石出溶体多为菱形到板状自形晶体,宽约6—10μm,长约50~75μm。运用CHIME化学定年方法对CCSD磷灰石团块中的独居石出溶物进行了年代学研究,获得其Th-Pb等时线年龄为202±28.3Ma,表明磷灰石团块形成于榴辉岩在折返过程中的重结晶和退变质,时代为晚三叠世。该年龄可能也代表了CCSD中UHP岩石中包裹磷灰石团块的石英脉的形成时代。  相似文献   
47.
A combined geochronological, geochemical, and Nd isotopic study of felsic high-pressure granulites from the Snowbird Tectonic Zone, northern Saskatchewan, Canada, has been carried out through the application of integrated electron microprobe and isotope dilution thermal ionization mass spectrometry (ID-TIMS) techniques. The terrane investigated is a 400 km2 domain of garnet–kyanite–K–feldspar-bearing quartzofeldspathic gneisses. Monazite in these granulites preserves a complex growth history from 2.6 to 1.9 Ga, with well-armored, high Y and Th grains included in garnet yielding the oldest U–Pb dates at 2.62 to 2.59 Ga. In contrast, matrix grains and inclusions in garnet rims that are not well-armored are depleted in Y and Th, and display more complicated U–Pb systematics with multiple age domains ranging from 2.5 to 2.0 Ga. 1.9 Ga monazite occurs exclusively as matrix grains. Zircon is typically younger (2.58 to 2.55 Ga) than the oldest monazite. Sm–Nd isotope analysis of single monazite grains and whole rock samples indicate that inclusions of Archean monazite in garnet are similar in isotopic composition to the whole rock signature with a limited range of slightly negative initial Nd. In contrast, grains that contain a Paleoproterozoic component show more positive initial Nd, most simply interpreted as reflecting derivation from a source involving consumption of garnet and general depletion of HREE's. Our preferred interpretation is that the oldest monazite dates record igneous crystallization of the protolith. The ca. 2.55 Ga dates in zircon and monazite record an extensive melting event during which garnet and ternary feldspar formed. Very high-pressure (> 1.5 GPa) metamorphism during the Paleoproterozoic at 1.9 Ga produced kyanite from garnet breakdown, and resulted in limited growth of new monazite and zircon. In the case of monazite, this is likely due to the armoring and sequestration of early-formed monazite such that it could not participate in metamorphic reactions during the high-pressure event, as well as the depletion of the REE's due to melt loss following the early melting event.  相似文献   
48.
Back-scattered electron (BSE) imaging and X-ray element mapping of monazite in low-grade metasedimentary rocks from the Paleoproterozoic Stirling Range Formation, southwestern Australia, reveal the presence of distinct, high-Th cores surrounded by low-Th, inclusion-rich rims. Previous geochronology has shown that the monazite cores are older than 1.9 Ga and overlap with the ages of detrital zircon grains (∼3.5–2.0 Ga), consistent with a detrital origin. Many cores have scalloped and embayed surfaces indicating partial dissolution of former detrital grains. Textural evidence links the growth of the monazite rims (∼1.2 Ga) to deformation and regional metamorphism during the Mesoproterozoic Albany-Fraser orogeny. These results indicate that high-Th detrital monazite is unstable under low-grade metamorphic conditions (<400°C) and was partially or completely dissolved. Dissolution was followed by near-instantaneous reprecipitation and the formation of low-Th monazite and ThSiO4. This reaction is likely to operate in other low-grade metasedimentary rocks, resulting in the progressive replacement of detrital monazite by metamorphic monazite during regional prograde metamorphism.  相似文献   
49.
After a decade of studies and development, it is now accepted that reliable U–Th–total Pb isochron ages can be calculated for monazite using an electron microprobe at μm scale, either directly on thin sections or on separated grains mounted in polished section. The potential for determining U–Th–Pb chemical ages from other U- and Th-enriched phases has been investigated compared to chemical monazite-dating results for which individual spot-age precisions of 20 to 100 Ma can be achieved from individual spot analyses. Using isochron plots for monazite, the age homogeneity of a given population of data can be assessed and, depending upon the number of analyses (n  50), a precision of 5 to 10 Ma can be obtained. The U content in xenotime widely varies from less than 0.1 wt.% up to 3 wt.%, but Th rarely exceeds 1 wt.%. As a consequence, the amount of radiogenic Pb produced during a given period remains significantly lower for xenotime than for monazite, leading to a lower precision (± 20 Ma) on the mean ages. Xenotime, however, appears to remain as a closed system, but common Pb must be carefully checked. Furthermore, the electron-microprobe technique (EPMA) allows controlling any age discrepancy on xenotime grains as small as 10–20 μm that cannot be dated by other isotopic methods. Such xenotime ages can be useful when studying the monazite–xenotime equilibrium. The electron microprobe is not the most reliable method for dating zircon since U and Th concentrations are generally low and common Pb is not negligible. Nevertheless, the spatial resolution of EPMA coupled with isotope methods allows conclusive in situ studies about radiogenic Pb mobility and metamictization. Thorite does not seem suitable for dating with either isotope methods or EPMA because of continuous radiogenic Pb loss. Conversely, the oxide phases, thorianite and baddeleyite are robust minerals with closed systems. They are rather rare and seem to incorporate negligible common Pb, making EPMA a method of choice for dating them. For thorianite, the precision on the mean age can be similar as that obtained for monazite, or even better, while the precision for baddeleyite cannot be significantly better than 20 to 50 Ma due to the limited amount of U ( 0.1%) and the lack of Th.  相似文献   
50.
A flow sheet was developed to recover thorium from Egyptian monazite sands. The results of a detailed investigation on the extraction and stripping of thorium in the hydrous oxide are obtained after alkaline dissolution followed by leaching with alkaline carbonate solutions. This cake was dissolved in 4 M HNO3 and thorium was extracted selectively by a counter-current extraction system using a mixer–settler contactor and Aliquat-336 in kerosene as extractant. The results show that 2 h of continuous operation are necessary to reach the steady state condition for the process. The extraction efficiency is found to be 80% and the stripping efficiency is 82%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号