首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3288篇
  免费   803篇
  国内免费   1056篇
测绘学   28篇
大气科学   48篇
地球物理   1008篇
地质学   3124篇
海洋学   437篇
天文学   73篇
综合类   141篇
自然地理   288篇
  2024年   15篇
  2023年   48篇
  2022年   108篇
  2021年   115篇
  2020年   132篇
  2019年   154篇
  2018年   135篇
  2017年   161篇
  2016年   148篇
  2015年   158篇
  2014年   200篇
  2013年   243篇
  2012年   223篇
  2011年   185篇
  2010年   172篇
  2009年   234篇
  2008年   203篇
  2007年   261篇
  2006年   228篇
  2005年   197篇
  2004年   227篇
  2003年   188篇
  2002年   160篇
  2001年   139篇
  2000年   162篇
  1999年   127篇
  1998年   106篇
  1997年   119篇
  1996年   113篇
  1995年   127篇
  1994年   70篇
  1993年   68篇
  1992年   59篇
  1991年   35篇
  1990年   28篇
  1989年   24篇
  1988年   18篇
  1987年   14篇
  1986年   9篇
  1985年   9篇
  1984年   5篇
  1983年   7篇
  1982年   4篇
  1981年   3篇
  1979年   3篇
  1978年   1篇
  1954年   2篇
排序方式: 共有5147条查询结果,搜索用时 359 毫秒
61.
大别山榴辉岩一片麻岩杂岩的成因   总被引:2,自引:1,他引:1  
大别山榴辉岩由辉长岩、大陆拉斑玄武岩和少量泥灰质经高压变质作用形成。大别地块可划分出四个形成条件不同的榴辉岩区,它们代表一种构造-岩石组合体。片麻岩杂岩中各种高压变质岩类的发现证明它们与榴辉岩一起经历了原地高压变质过程。二者变质作用P-T参数的差异归因于抬升过程中退变质反应速度的不同。不同地区榴辉岩退变质组合及P-T条件与围岩的一致性表明,大别杂岩现今所展示的“递增”变质带是由榴辉岩相退变质作用形成的。高压榴辉岩-片麻岩杂岩的产生是印支期扬子与华北两个大陆板块碰撞的结果。  相似文献   
62.
余星  许绪成  韩喜球  丁巍伟  胡航  何虎  余娅娜 《地质学报》2022,96(12):4131-4139
特提斯最初是指欧亚大陆南缘的古海洋,后逐渐引申出从元古宙、古生代到中生代的一系列位于劳亚大陆与冈瓦纳大陆之间的古大洋,如原特提斯洋、古特提斯洋和新特提斯洋,不同大洋在时间上前后交叠。如今横亘在冈瓦纳大陆(南极洲)和欧亚大陆之间的是印度洋,是新特提斯洋的继承者,可以另称为“全新特提斯洋”。这一概念的引申直接体现了印度洋与特提斯构造域一脉相承的关系,有助于将今论古、由此及彼,更直观地了解特提斯构造域的演化过程。本文按时间序列梳理了印度洋的大地构造演化和岩浆作用过程,识别了印度洋在155 Ma、120 Ma、90~84 Ma、76 Ma、65 Ma、52 Ma、45 Ma、38 Ma等关键时期的异常海底扩张记录,这些扩张事件将为标定新特提斯构造域的演化提供参照。其中155 Ma可能指示了新特提斯洋的鼎盛期,90 Ma指示了新特提斯洋的洋中脊俯冲,76~52 Ma是非洲- 阿拉伯大陆与欧亚大陆初始碰撞- 主碰撞(即新特提斯洋西部关闭)的时期,65~45 Ma是印度次大陆与欧亚大陆初始碰撞- 主碰撞(即新特提斯洋中部关闭)的时期,38 Ma是澳大利亚北部大洋开始净俯冲(即新提斯洋东部开始消减)的时间。印度洋扩张历史的研究为理解新特提斯洋消亡提供参考标尺。站在“后方”印度洋的角度,可以更清晰地透视“前线”特提斯构造域的演化过程,为理解板块构造活动规律提供支撑。  相似文献   
63.
勉略构造带作为秦岭造山带内重要的构造边界,关于其构造属性及晚古生代以来的地质背景,一直是学术界争论的焦点。碎屑锆石U-Pb年代学在限定地层单元的最大沉积年龄、研究区域构造岩浆事件及约束构造地质背景等方面行之有效。基于此,通过对勉略带内五郎坪北侧两河口变沉积地层和侵入其中的变形花岗岩脉体进行LA-ICP-MS锆石U-Pb年代学研究。获得2件变形花岗岩脉的结晶年龄均为406±1Ma。碎屑锆石主年龄谱分别为422~456Ma和558~826Ma,峰值年龄为441Ma和771Ma、813Ma,次级年龄谱分别为942~1495Ma和1658~2981Ma,峰值年龄不明显。依据最小一组碎屑锆石的峰值年龄(441Ma),和侵入其中的变形花岗岩脉(406±0.6Ma),限定该变沉积地层形成时代为406~441Ma(S_1-D_1)。碎屑锆石年龄谱显示该套变沉积地层物质来源较为复杂,其中秦岭造山带及扬子板块北缘早古生代、新元古代岩浆岩为其提供了74%±的物源,古老变质基底为其提供了26%±的物源。通过与区域上已有资料对比,认为勉略构造带内晚古生代沉积地层形成环境与邻区大致相同,且本次所获得的变沉积岩碎屑锆石年龄谱也与邻区泥盆系相似。综合认为,勉略构造带与邻区在晚古生代应属同一构造环境,晚古生代"勉略海盆"应当包括整个南秦岭。  相似文献   
64.
Geluk  M.C.  Röhling  H.-G. 《Geologie en Mijnbouw》1997,76(3):227-246
Detailed log correlations of the largely fluvio-lacustrine Lower Triassic Buntsandstein (Late Permian-Early Anisian), carried out on 80 wells in the Dutch onshore and offshore areas, can be linked to northwest-German high-resolution sequence stratigraphy. The correlations show that cyclic sedimentation occurred in large parts of the basin. Seven 1st-order sequences are recognised, namely the Main Claystone, Rogenstein, Volpriehausen, Detfurth, Hardegsen, Solling and Lower Röt Sequences. They are overlain by the lower part of the Upper Röt–Lower Muschelkalk Sequence. Distinct sequence boundaries have been identified at the bases of four sequences: Volpriehausen, Detfurth, Solling and Upper Röt. The higher-order sequences consist of fining-upwards cycles with a thickness of up to tens of metres. The sequences are laterally persistent and have a characteristic expression on gamma-ray and sonic logs. In the Lower Buntsandstein, they display a uniform character throughout most of the area, with only minor differences in thickness or lithology. NNE-oriented lows and swells were formed during deposition of the Volpriehausen, Detfurth and Hardegsen Sequences. Uplift prior to the deposition of the Solling Sequence caused deep erosion on the swells in the basin and minor erosion in the lows. The high-resolution sequences probably represent alternating, relatively wet and dry climatic periods, with a periodicity of about 100 000 years. An analysis of the sequences suggests that their reduced thickness on the swells is mainly the effect of erosion. This is supported by analyses of the accumulation patterns and rates.  相似文献   
65.
Quaternary buried ancient river channels are widespread in the shallow-level sediments of the northern shelf of the South China Sea. The sedimentary sequence mainly of fluvial deposits comprise an important component part of the low-stand system tract and transgressive system tract in the study region. The plannar variation and spatial association of the sedimentary features such as incised valley fillings, deltaic foreset wedges and block slides of shelf-marginal fans reflect the palaeogeographic environment during the fall of the regional sea level in the northern part of the South China Sea. Based on the high-resolution seismic reflection data and gelogical data from boreholes, the present paper makes an integrated interpretation of the Quaternary ancient river channels in the shallow sediments of the study area, studies the sedimentary features of the ancient channels such as their spatial distribution, seismic facies reflection indicators, sedimentary facies and sand -body types, and discusses thei  相似文献   
66.
We performed a series of laboratory experiments in which elastic waves were transmitted across a simulated fault. Two types of experiments were carried out: (1) Normal Stress Holding Test (NSHT): normal stress was kept constant for about 3 h without shear stress and transmission waves were observed. (2) Shear Stress Increasing Test (SSIT): shear stress was gradually increased until a stick-slip event occurred. Transmission waves were continuously observed throughout the process of stress accumulation. We focused on the change in transmission waves during the application of shear stress and especially during precursory slips.It was found in NSHT that the amplitude of transmission waves linearly increased with the logarithm of stationary contact time. The increase amounted to a few percent after about 3 h. Creep at asperity contacts is responsible for this phenomenon. From a theoretical consideration, it was concluded that the real contact area increased with the logarithm of stationary contact time.We observed in SSIT a significant increase in wave amplitude with shear stress application. This phenomenon cannot be attributed to the time effect observed in NSHT. Instead, it can be explained by the mechanism of “junction growth” proposed by Tabor. Junction growth yields an increase in real contact area. It is required for junction growth to occur that the material in contact is already plastic under a purely normal loading condition. A computer simulation confirmed that this requirement was satisfied in our experiments. We also found that the rate at which the amplitude increased was slightly reduced prior to a stick-slip event. The onset time of the reduction well coincides with the onset of precursory slip. The cause of the reduction is attributed to the reset of stationary contact time due to displacement. This interpretation is supported by the result of NSHT. Taking the time of stationary contact in SSIT into account, we may expect the change in wave amplitude to be, at most, only a few percent. The observed slight reduction in increasing rate is, in this sense, reasonable. The static stiffness of the fault also decreases with precursory slip. It was also found that low frequency waves are a better indicator of precursory slip than high frequency waves. This might suggest that low frequency waves with longer wavelength are a better indicator of average behavior of faults. The problem, however, merits a further investigation. The shifts in phase were also found to be a good indicator of the change in contact state of the fault. The changes in both amplitude and phase of transmission waves are unifyingly understood through the theory of transmission coefficient presented by Pyrak-Nolte et al. Rough surfaces have a tendency to give larger stick-slips than smooth surfaces. The amount of precursory slip is larger for rough surfaces than for smooth surfaces. Although it was confirmed by a computer simulation that rough surfaces have larger contact diameters than smooth surfaces, the rigorous relationship between the surface roughness (contact diameter) and the amount of precursory slips was not established.  相似文献   
67.
The Latur earthquake (Mw 6.1) of 29 September 1993 is a rare stable continental region (SCR) earthquake that occurred on a previously unknown blind fault. In this study, we determined detailed three-dimensional (3-D) P- and S-wave velocity (Vp, Vs) and Poisson's ratio (σ) structures by inverting the first P- and S-wave high-quality arrival time data from 142 aftershocks that were recorded by a network of temporary seismic stations. The source zone of the Latur earthquake shows strong lateral heterogeneities in Vp, Vs and σ structures, extending in a volume of about 90 × 90 × 15 km3. The mainshock occurred within, but near the boundary, of a low-Vp, high-Vs and low-σ zone. This suggests that the structural asperities at the mainshock hypocenter are associated with a partially fluid-saturated fractured rock in a previously unknown source zone with intersecting fault surfaces. This might have triggered the 1993 Latur mainshock and its aftershock sequence. Our results are in good agreement with other geophysical studies that suggest high conductivity and high concentration of radiogenic helium gas beneath the source zone of the Latur earthquake. Our study provides an additional evidence for the presence of fluid related anomaly at the hidden source zone of the Latur earthquake in the SCR and helps us understand the genesis of damaging earthquakes in the SCR of the world.  相似文献   
68.
Seismic lamination and anisotropy of the Lower Continental Crust   总被引:2,自引:3,他引:2  
Seismic lamination in the lower crust associated with marked anisotropy has been observed at various locations. Three of these locations were investigated by specially designed experiments in the near vertical and in the wide-angle range, that is the Urach and the Black Forrest area, both belonging to the Moldanubian, a collapsed Variscan terrane in southern Germany, and in the Donbas Basin, a rift inside the East European (Ukrainian) craton. In these three cases, a firm relationship between lower crust seismic lamination and anisotropy is found. There are more cases of lower-crustal lamination and anisotropy, e.g. from the Basin and Range province (western US) and from central Tibet, not revealed by seismic wide-angle measurements, but by teleseismic receiver function studies with a P–S conversion at the Moho. Other cases of lamination and anisotropy are from exhumed lower crustal rocks in Calabria (southern Italy), and Val Sesia and Val Strona (Ivrea area, Northern Italy). We demonstrate that rocks in the lower continental crust, apart from differing in composition, differ from the upper mantle both in terms of seismic lamination (observed in the near-vertical range) and in the type of anisotropy. Compared to upper mantle rocks exhibiting mainly orthorhombic symmetry, the symmetry of the rocks constituting the lower crust is either axial or orthorhombic and basically a result of preferred crystallographic orientation of major minerals (biotite, muscovite, hornblende). We argue that the generation of seismic lamination and anisotropy in the lower crust is a consequence of the same tectonic process, that is, ductile deformation in a warm and low-viscosity lower crust. This process takes place preferably in areas of extension. Heterogeneous rock units are formed that are generally felsic in composition, but that contain intercalations of mafic intrusions. The latter have acted as heat sources and provide the necessary seismic impedance contrasts. The observed seismic anisotropy is attributed to lattice preferred orientation (LPO) of major minerals, in particular of mica and hornblende, but also of olivine. A transversely isotropic symmetry system, such as expected for sub-horizontal layering, is found in only half of the field studies. Azimuthal anisotropy is encountered in the rest of the cases. This indicates differences in the horizontal components of tectonic strain, which finally give rise to differences in the evolution of the rock fabric.  相似文献   
69.
The San Lorenzo area belongs to the Esmeraldas–Tumaco seismic zone where some of the strongest earthquakes of South America occurred during the 20th century. This paper provides evidence for a succession of geomorphic changes characterized by the disruption of the Quaternary drainage network and the reshaping of the Cayapas–Santiago estuary. The rise of the La Boca uplift bordered by the La Boca and San Lorenzo faults is responsible for the southward diversion of the Palabi, Tululbi, Bogotá and Carolina rivers toward the Santiago and Cayapas rivers. The increase of the discharge directed to the Cayapas River generated the change of the channel pattern downstream from the confluence, and the avulsion of a new estuary through the coastal plain. According to the dating of beach ridges the avulsion occurred in the period 3200–2800 BP. This period corresponds also to a faster accretion of the beach ridge margin, interpreted as a response to a small uplift of the shore. The coherency of the three morphologic evidences—diversion of drainage network, avulsion and increase of coastal accretion—suggest a unique morphotectonic event, in relation with the activity of the Esmaraldas–Tumaco seismic zone. The opening of a direct communication through the mangrove margin may have brought favorable conditions for the development of the La Tolita archaeological site after 3000 BP.  相似文献   
70.
Mapping of lateritic bauxites over the West African rifted margin and analysis of the geomorphic properties of these bauxites, combined with available geological data lead to a discussion of the presence of either two Meso-Cenozoic planation surfaces or a single Eocene surface to account for the morphotectonic and paleoclimatic evolution of the Guinean landforms. At large scale, two stepped bauxitic levels are documented. Ongoing or episodic uplift following Gondwana breakup and Meso-Cenozoic climate change are proposed to have allowed the formation and abandonment of an Early mid-Cretaceous surface today preserved as the higher bauxitic level, and the setting of an Eocene planation surface bearing a second generation of bauxites, making the lower bauxitic level. The single Eocene surface hypothesis requires that Paleogene bauxitization preserved large pre-existing relief to explain two stepped bauxitic levels of the same age. The two-surface hypothesis is favored because it would explain rebauxitization of alluvial pebbles of bauxites under the lower lateritic level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号