首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   9篇
  国内免费   2篇
地球物理   51篇
地质学   25篇
综合类   4篇
自然地理   69篇
  2022年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   4篇
  2010年   3篇
  2009年   6篇
  2008年   7篇
  2007年   12篇
  2006年   6篇
  2005年   12篇
  2004年   6篇
  2003年   13篇
  2002年   5篇
  2001年   6篇
  2000年   9篇
  1999年   9篇
  1998年   4篇
  1997年   4篇
  1996年   6篇
  1995年   4篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   5篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有149条查询结果,搜索用时 218 毫秒
141.
142.
143.
Three magnitude >6 earthquakes struck Qaidam, Qinghai province, China, in November 10th 2008, August 28th and 31st 2009 respectively. The Zongwulongshan fault has often been designated as the active seismogenic structure, although it is at odd with the data. Our continuous GPS station (CGPS), the Xiao Qaidam station, located in the north of the Qaidam basin, is less than 30 km to the southwest of the 2008 earthquake. This CGPS station recorded the near field co-seismic deformation. Here we analyzed the co-seismic dislocation based on the GPS time series and the rupture processes from focal mechanism for the three earthquakes. The aftershocks were relocated to constrain the spatial characteristics of the 2008 and 2009 Qaidam earthquakes. Field geological and geomorphological investigation and interpretation of satellite images show that the Xitieshan fault and Zongwulongshan fault were activated as left lateral thrust during the late Quaternary. Evidence of folding can also be identified. Integrated analyses based on our data and the regional tectonic environment show that the Xitieshan fault is the fault responsible for the 2008 Qaidam earthquake, which is a low dip angle thrust with left lateral strike slip. The Zongwulongshan fault is the seismogenic fault of the 2009 earthquakes, which is a south dipping back thrust of the northern marginal thrust system of the Qaidam basin. Folding takes a significant part of the deformation in the northern marginal thrust system of the Qaidam basin, dominating the contemporary structure style of the northern margin of the Qaidam basin and Qilianshan tectonic system. In this region, this fault and fold system dominates the earthquake activities with frequent small magnitude earthquakes.  相似文献   
144.
主要从则木河断裂带上不同地貌单元的走滑位移及分布情况,对则木河断裂各次级剪切断层滑动速率的研究,获得了它们不同时期的活动量。  相似文献   
145.
Following the 1996 February 18 M L = 5.2 earthquake in the Agly massif in the eastern French Pyrenees, we installed a temporary network of seismometers around the epicentre. In this paper, we analyse 336 well-located aftershocks recorded from February 19 to February 23 by 18 temporary stations and two permanent stations located less than 35  km from the epicentre. Most aftershocks have been located with an accuracy better than 1.5  km in both horizontal and vertical positions. Their spatial distribution suggests the reactivation of a known fault system. We determined 39 fault-plane solutions using P -wave first motions. Despite their diversity, the focal mechanisms yield an E–W subhorizontal T-axis. We also determined fault-plane solutions and principal stress axes using the method developed by Rivera & Cisternas (1990 ) for the 15 best-recorded events. We obtain a pure-shear-rupture tectonic regime under N–S subhorizontal compression and E–W subhorizontal extension. These principal stress axes, which explain the focal mechanisms for at least 75 per cent of the 39 aftershocks, are different from the axes deduced from the main shock. The post-earthquake stress field caused by the main-shock rupture, modelled as sinistral strike slip on three vertical fault segments, is computed for various orientations and magnitudes of the regional stress field, assumed to be horizontal. The aftershock distribution is best explained for a compressive stress field oriented N30°E. Most aftershocks concentrate where the Coulomb failure stress change increases by more than 0.2  MPa. The diversity of aftershock focal mechanisms, poorly explained by this model, may reflect the great diversity in the orientations of pre-existing fractures in the Agly massif.  相似文献   
146.
147.
Seismotectonic information and interpretations available for SE Sicily suggest three groups of possible sources for the M=7.1-7.5 mainshock of 1693 and its strong foreshock: (1) normal faults belonging to the Ibleo Maltese Escarpment (also: Malta Escarpment); (2) normal faults associated with the two adjacent Simeto and Scordia-Lentini structures; (3) a transfer structure between the Sicily Straits rift system and the two grabens to the north. We use a new kinematic model to invert the data sets of macroseismic intensities of the two earthquakes to retrieve information on their sources. For this, we invert point observations, or intensities tessellated with the Voronoi polygons technique, and treat residuals of inversion in the matrix of points, or in the tessellated plane. Our inversions of the regional intensity patterns using this technique show that family N°3 is a good candidate for the foreshock of 9 January, 1693. For the mainshock of 11 January, 1693, an almost perfect synthesis of its intensity IX area was obtained with our model and a source belonging to family N°3. However, all information considered (tsunami included), this earthquake could have been produced either by (3) or by a fault located along the Ibleo-Maltese Escarpment, and tangential to the Augusta and Siracusa promontories.  相似文献   
148.
We present the results of body waveform modelling studies for 17 earthquakes of M w ≥5.7 occurring in the South Island, New Zealand region between 1918 and 1962, including the 1929 M s = 7.8 Buller earthquake, the largest earthquake to have occurred in the South Island this century. These studies confirm the concept of slip partitioning in the northern South Island between strike-slip faulting in southwestern Marlborough and reverse and strike-slip faulting in the Buller region, but indicate that the zone of reverse faulting is quite localized. In the central South Island, all historical earthquakes appear to be associated with strike-slip faulting, although recent (post-1991) reverse faulting events suggest that slip partitioning also occurs within this region. The difference between historical and recent seismicity in the central South Island may also reflect stress readjustment occurring in response to the 1717 ad rupture along the Alpine fault. Within the Fiordland region (southwestern South Island) none of the historical earthquakes appears to have occurred along the Australian/Pacific plate interface, but rather they are associated with complex deformation of the subducting plate as well as with deformation of the upper (Pacific) plate. Two earthquakes in the Puysegur Bank region south of the South Island suggest that strike-slip deformation east of the Puysegur Trench is playing a major role in the tectonics of the region.  相似文献   
149.
We present geological and morphological data, combined with an analysis of seismic reflection lines across the Ionian offshore zone and information on historical earthquakes, in order to yield new constraints on active faulting in southeastern Sicily. This region, one of the most seismically active of the Mediterranean, is affected by WNW–ESE regional extension producing normal faulting of the southern edge of the Siculo–Calabrian rift zone. Our data describe two systems of Quaternary normal faults, characterized by different ages and related to distinct tectonic processes. The older NW–SE-trending normal fault segments developed up to ≈400  kyr ago and, striking perpendicular to the main front of the Maghrebian thrust belt, bound the small basins occurring along the eastern coast of the Hyblean Plateau. The younger fault system is represented by prominent NNW–SSE-trending normal fault segments and extends along the Ionian offshore zone following the NE–SW-trending Avola and Rosolini–Ispica normal faults. These faults are characterized by vertical slip rates of 0.7–3.3  mm  yr −1 and might be associated with the large seismic events of January 1693. We suggest that the main shock of the January 1693 earthquakes ( M ~ 7) could be related to a 45  km long normal fault with a right-lateral component of motion. A long-term net slip rate of about 3.7  mm  yr −1 is calculated, and a recurrence interval of about 550 ± 50  yr is proposed for large events similar to that of January 1693.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号