首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
地球物理   16篇
地质学   2篇
  2021年   3篇
  2019年   1篇
  2010年   1篇
  2008年   3篇
  2006年   4篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
排序方式: 共有18条查询结果,搜索用时 62 毫秒
11.
Computer simulations of the topographic evolution of the proposed post‐mining rehabilitated landform for the ERA Ranger Mine, showed that for the unvegetated and unripped case, the landform at 1000 years would be dissected by localized erosion valleys (maximum depth = 7·6 m) with fans (maximum depth = 14·8 m) at the outlet of the valleys. Valley form simulated by SIBERIA has been recognized in nature. This indicates that SIBERIA models natural processes efficiently. For the vegetated and ripped case, reduced valley development (maximum 1000 year depth = 2·4m) and deposition (maximum 1000 year depth = 4·8m) occurred in similar locations as for the unvegetated and unripped case (i.e. on steep batter slopes and in the central depression areas of the landform). For the vegetated and ripped condition, simulated maximum valley depth in the capping over the tailings containment structure was c. 2·2 m. By modelling valley incision, decisions can be made on the depth of tailings cover required to prevent tailings from being exposed to the environment within a certain time frame. A reduction in thickness of 1 m of capping material over tailings equates to c. 1 000 000 Mm3 over a 1 km2 tailings dam area. This represents a saving of c. $1 500 000 in earthworks alone. Incorporation of SIBERIA simulations in the design process may result in cost reduction while improving confidence in environmental protection mechanisms. Copyright 2000 © Environmental Research Institute of the Supervising Scientist, Commonwealth of Australia.  相似文献   
12.
13.
Mine tailings dams pose a signi?cant risk to the environment if not correctly designed, built and maintained. The effect of erosion on a back‐?lled and capped earthen dam wall was examined by construction of an analogue in an experimental model landscape simulator. The ability of a computer‐based erosion model to simulate erosion processes on the experimental structure was examined. The experimental landscape simulator uses a rainfall simulator to create overland ?ow and erode an arti?cial soil. At the commencement of rainfall, erosion occurred rapidly with deep gullies developing on the dam wall batter. The gullies developed by downcutting, with consequent bank collapse and slumping, and followed ?ow lines towards their source. A physically based erosion model (SIBERIA) was used to simulate erosion on the experimental dam wall. Erosion and consequent development of the experimental structure were modelled by SIBERIA. The ability of SIBERIA to model incision and landscape development in the experimental setting was further examined by use of a simple one‐dimensional experimental catchment. The laboratory experiment and computer simulations demonstrated that erosion on the tailings dam is driven by concentrated runoff and that runoff control is crucial to the long‐term stability of such structures. The study demonstrates that computer‐based erosion models can be used to predict how erosion occurs on the experimental landscapes examined, thus providing con?dence in their use and application. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
14.
Landform evolution models are powerful tools for determining long-term erosional stability and denudation rates spanning geological timescales. SIBERIA, CAESAR and CHILD are examples of these model. The newly developed State Space Soil Production and Assessment Model (SSSPAM) coupled soilscape-landform evolution model has the ability to assess overall erosion rates of catchment scale landforms either using short-term precipitation events, variable precipitation or time-averaged precipitation (annual average). In addition, SSSPAM has the capability of developing the subsurface soil profile through weathering and armouring. In SSSPAM, physical processes of pedogenesis such as erosion and armouring, diffusion, sediment deposition and weathering are modelled using a state space matrix approach. In this article we simulate the short-term evolution (100 years) of a proposed post-mining landform using both SIBERIA and SSSPAM and compare the erosion and sediment output results. For the short-term simulations SSSPAM's armouring capability was disabled. The models were then used to simulate the evolution of the catchment for 10,000 years. Results demonstrate that the short-term SSSPAM simulation results compare well with the results from the established landform evolution model SIBERIA. The long-term armouring disabled SSSPAM simulations produces simulated erosion rates comparable with SIBERIA simulations both of which are similar to upper limit of field measured denudation rates. The SSSPAM simulation using armouring demonstrated that armouring reduced the erosion rate of the catchment by a factor of 4 which is comparable with the lower limit of field measured denudation rates. This observation emphasizes the importance of armouring in long-term evolution of landforms. Soil profile cross-sections developed from the same results show that SSSPAM can also reproduce subsurface soil evolution and stratification and spatial variability of soil profile characteristics typically observed in the field.  相似文献   
15.
Incision as a result of fluvial erosion is an important process to model when simulating landform evolution. For gullies, it is apparent that coupled with the processes that cause incision there must be a range of processes that stop incision. Once started, rills and gullies will grow infinitely without a reduction in support area and/or being arrested by deposition and armouring. Some of these processes have been well studied under the heading of inter-rill erosion. Other limiting processes are related to the shape of the landform and how downstream deposition areas are linked geomorphically to the upstream gullies. Armouring is also an important process that reduces gully incision and extension, where the gully erodes to bedrock and the resistant base limits further development. Post-mining landscapes are new surfaces with new materials and provide the opportunity to examine gully initiation, extension and stabilization. The work presented here has largely been driven by the mining industry, where there has been a need to assess erosion over hazardous wastes like mine tailings and low-level nuclear waste. We demonstrate the usefulness of computer-based landscape evolution models and the more recent soilscape models (that include both surface and subsurface processes) to understand both fluvial and diffusive processes as well as armouring in a digital elevation model framework (as well as landscape evolution). Landscape evolution models provide insights into complex non-linear systems such as gullies. A key need is that of field data to parameterize and validate the models. It is argued that current models have more capability than field data available for parameterization and importantly the validation of model outputs.  相似文献   
16.
SIBERIA is a physically based model for the geomorphic evolution of landforms. It is essential that the SIBERIA model be tested or validated against controlled landform development. Previous studies have demonstrated that SIBERIA is able to simulate declining equilibrium landforms and in this paper we examine SIBERIA's ability to simulate landforms as they evolve to their declining equilibrium form. These landscapes are termed transient landforms. Landscapes generated by SIBERIA were compared to those produced by a physical model (experimental model landforms) at stages of evolution. Comparison of the experimental landscapes with the simulated landscapes using total mass, hypsometric curve, width function, cumulative area distribution and area–slope demonstrate that SIBERIA can simulate the experimental model landscape during development (i.e. transient landscapes). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
17.
The current generation of landscape evolution models use a digital elevation model for landscape representation. These programs also contain a hydrological model that defines overland flow with the drainage network routed to an outlet. One of the issues with landscape evolution modelling is the hydrological correctness of the digital elevation model used for the simulations. Despite the wide use and increased quality of digital elevation models, data pits and depressions in the elevation data are a common feature and their removal will remain a necessary step for many data sets. This study examines whether a digital elevation model can be hydrologically correct (i.e. all depressions removed so that all water can run downslope) before use in a landscape evolution model and what effect depression removal has on long‐term geomorphology and hydrology. The impact on sediment transport rates is also examined. The study was conducted using a field catchment and a proposed landform for a post‐mining landscape. The results show that there is little difference in catchment geomorphology and hydrology for the non‐depression removed and depression removed data sets. The non‐depression removed and depression removed digital elevation models were also evaluated as input to a landscape evolution model for a 50 000 year simulation period. The results show that after 1000 years there is little difference between the data sets, although sediment transport rates did vary considerably early on in the simulation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
18.
Landscape evolution models provide a way to determine erosion rates and landscape stability over times scales from tens to thousands of years. The SIBERIA and CAESAR landscape evolution models both have the capability to simulate catchment–wide erosion and deposition over these time scales. They are both cellular, operate over a digital elevation model of the landscape, and represent fluvial and slope processes. However, they were initially developed to solve research questions at different time and space scales and subsequently the perspective, detail and process representation vary considerably between the models. Notably, CAESAR simulates individual events with a greater emphasis on fluvial processes whereas SIBERIA averages erosion rates across annual time scales. This paper describes how both models are applied to Tin Camp Creek, Northern Territory, Australia, where soil erosion rates have been closely monitored over the last 10 years. Results simulating 10 000 years of erosion are similar, yet also pick up subtle differences that indicate the relative strengths and weaknesses of the two models. The results from both the SIBERIA and CAESAR models compare well with independent field data determined for the site over different time scales. Representative hillslope cross‐sections are very similar between the models. Geomorphologically there was little difference between the modelled catchments after 1000 years but significant differences were revealed at longer simulation times. Importantly, both models show that they are sensitive to input parameters and that hydrology and erosion parameter derivation has long‐term implications for sediment transport prediction. Therefore selection of input parameters is critical. This study also provides a good example of how different models may be better suited to different applications or research questions. Copyright © 2010 John Wiley & Sons, Ltd and Commonwealth of Australia  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号