首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   484篇
  免费   173篇
  国内免费   329篇
测绘学   1篇
大气科学   494篇
地球物理   85篇
地质学   233篇
海洋学   106篇
天文学   6篇
综合类   16篇
自然地理   45篇
  2024年   3篇
  2023年   13篇
  2022年   20篇
  2021年   21篇
  2020年   25篇
  2019年   30篇
  2018年   27篇
  2017年   26篇
  2016年   33篇
  2015年   26篇
  2014年   53篇
  2013年   53篇
  2012年   31篇
  2011年   51篇
  2010年   51篇
  2009年   57篇
  2008年   54篇
  2007年   35篇
  2006年   41篇
  2005年   42篇
  2004年   33篇
  2003年   30篇
  2002年   22篇
  2001年   22篇
  2000年   27篇
  1999年   19篇
  1998年   40篇
  1997年   26篇
  1996年   19篇
  1995年   8篇
  1994年   12篇
  1993年   12篇
  1992年   5篇
  1991年   11篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
排序方式: 共有986条查询结果,搜索用时 15 毫秒
91.
We present an 8000‐year history spanning 650 km of ice margin retreat for the largest marine‐terminating ice stream draining the former British–Irish Ice Sheet. Bayesian modelling of the geochronological data shows the ISIS expanded 34.0–25.3 ka, accelerating into the Celtic Sea to reach maximum limits 25.3–24.5 ka before a collapse with rapid marginal retreat to the northern Irish Sea Basin (ISB). This retreat was rapid and driven by climatic warming, sea‐level rise, mega‐tidal amplitudes and reactivation of meridional circulation in the North Atlantic. The retreat, though rapid, is uneven, with the stepped retreat pattern possibly a function of the passage of the ice stream between normal and adverse ice bed gradients and changing ice stream geometry. Initially, wide calving margins and adverse slopes encouraged rapid retreat (~550 m a?1) that slowed (~100 m a?1) at the topographic constriction and bathymetric high between southern Ireland and Wales before rates increased (~200 m a?1) across adverse bed slopes and wider and deeper basin configuration in the northern ISB. These data point to the importance of the ice bed slope and lateral extent in predicting the longer‐term (>1000 a) patterns and rates of ice‐marginal retreat during phases of rapid collapse, which has implications for the modelling of projected rapid retreat of present‐day ice streams. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
92.
93.
气象驱动数据质量是影响流域水文过程模拟精度的一个重要因素。基于新疆额尔齐斯河流域及周边区域8个气象站记录的数据,对ERA-Interim再分析资料和中国区域地面气象要素驱动数据集(CMFD)在流域的适用性进行了评价,并对比了ERA-Interim和CMFD气象要素年均值在流域的空间分布。结果表明:ERA-Interim和CMFD记录气温、相对湿度、向下短波辐射和向下长波辐射数据与观测数据具有较高的一致性,但降水和风速数据与观测数据的一致性比较差。小时尺度上ERA-Interim记录的气温、相对湿度、降水量、向下短波辐射准确度略高于CMFD数据,而日尺度上CMFD记录的所有气象要素的准确度均高于ERA-Interim数据,结合Noah-MP模型的模拟结果,认为CMFD数据在新疆额尔齐斯河流域的适用性整体优于ERA-Interim数据。从两种驱动数据获取的流域气象要素空间分布来看,ERA-Interim和CMFD获取的年平均气温、风速、相对湿度、降水量、向下长波辐射在流域空间具有高度一致性,但向下短波辐射空间分布差别较大。  相似文献   
94.
季风涡旋对台风活动有重要的影响, 因此研究季风涡旋的形成机制有利于提高台风预报的准确性。此研究利用中尺度非静力数值模式WRF-ARW模拟1991年8月季风涡旋的生成过程, 并对其生成机制进行分析。模式结果表明, 此次季风涡旋个例是由一个中纬度气旋性低压发展而来。初期中纬度高层正位势涡度的强迫作用有利于对流层低层气旋性低压的发展和维持, 随后高层动力强迫作用减弱, 但中纬度气旋性低压在南移过程中其东南侧对流带逐渐与低纬地区的对流带合并, 使得对流潜热释放增强, 进而使低压在Gill响应的作用下不断加强并最终形成季风涡旋。同时, 涡旋的对流结构表现出明显的非对称性, 因而使其得以维持较大尺度。敏感性试验的结果表明对流层高层强迫对于初始低层扰动的发展至关重要, 而后期热带地区的潜热释放有利于季风涡旋的增强。   相似文献   
95.
96.
张祎  李建 《大气科学进展》2013,30(3):884-907
Cloud and its radiative effects are major sources of uncertainty that lead to simulation discrepancies in climate models. In this study, shortwave cloud radiative forcing (SWCF) over major stratus regions is evaluated for Atmospheric Models Intercomparison Project (AMIP)-type simulations of models involved in the third and fifth phases of the Coupled Models Intercomparison Project (CMIP3 and CMIP5). Over stratus regions, large deviations in both climatological mean and seasonal cycle of SWCF are found among the models. An ambient field sorted by dynamic (vertical motion) and thermodynamic (inversion strength or stability) regimes is constructed and used to measure the response of SWCF to large-scale controls. In marine boundary layer regions, despite both CMIP3 and CMIP5 models being able to capture well the center and range of occurrence frequency for the ambient field, most of the models fail to simulate the dependence of SWCF on boundary layer inversion and the insensitivity of SWCF to vertical motion. For eastern China, there are large differences even in the simulated ambient fields. Moreover, almost no model can reproduce intense SWCF in rising motion and high stability regimes. It is also found that models with a finer grid resolution have no evident superiority than their lower resolution versions. The uncertainties relating to SWCF in state-of-the-art models may limit their performance in IPCC experiments.  相似文献   
97.
98.
An ocean general circulation model (OGCM) is used to demonstrate remote effects of tropical cyclone wind (TCW) forcing in the tropical Pacific. The signature of TCW forcing is explicitly extracted using a locally weighted quadratic least=squares regression (called as LOESS) method from six-hour satellite surface wind data; the extracted TCW component can then be additionally taken into account or not in ocean modeling, allowing isolation of its effects on the ocean in a clean and clear way. In this paper, seasonally varying TCW fields in year 2008 are extracted from satellite data which are prescribed as a repeated annual cycle over the western Pacific regions off the equator (poleward of 10°N/S); two long-term OGCM experiments are performed and compared, one with the TCW forcing part included additionally and the other not. Large, persistent thermal perturbations (cooling in the mixed layer (ML) and warming in the thermocline) are induced locally in the western tropical Pacific, which are seen to spread with the mean ocean circulation pathways around the tropical basin. In particular, a remote ocean response emerges in the eastern equatorial Pacific to the prescribed off-equatorial TCW forcing, characterized by a cooling in the mixed layer and a warming in the thermocline. Heat budget analyses indicate that the vertical mixing is a dominant process responsible for the SST cooling in the eastern equatorial Pacific. Further studies are clearly needed to demonstrate the significance of these results in a coupled ocean-atmosphere modeling context.  相似文献   
99.
A thermodynamic model for haplogranitic melts in the system Na2O–CaO–K2O–Al2O3–SiO2–H2O (NCKASH) is extended by the addition of FeO and MgO, with the data for the additional end‐members of the liquid incorporated in the Holland & Powell (1998) internally consistent thermodynamic dataset. The resulting dataset, with the software thermocalc , is then used to calculate melting relationships for metapelitic rock compositions. The main forms for this are PT and TX pseudosections calculated for particular rock compositions and composition ranges. The relationships in these full‐system pseudosections are controlled by the low‐variance equilibria in subsystems of NCKFMASH. In particular, the solidus relationships are controlled by the solidus relationships in NKASH, and the ferromagnesian mineral relationships are controlled by those in KFMASH. However, calculations in NCKFMASH allow the relationships between the common metapelitic minerals and silicate melt to be determined. In particular, the production of silicate melt and melt loss from such rocks allow observations to be made about the processes involved in producing granulite facies rocks, particularly relating to open‐system behaviour of rocks under high‐grade conditions.  相似文献   
100.
A linear,hemispheric and stationary spectral model with multilayers in the vertical was employed to simulate thevertical propagation of waves triggered by mountains.Results show that,in cooperation with the East Asia zonal meanflow,Tibetan Plateau can excite a strong wavenumber 1 perturbation in the stratosphere with its ridge and trough lo-cated over the Pacific and Atlantic Oceans respectively.On the other hand,the stratospheric wavenumber 1 perturbationcaused by the mechanical forcing of the Rocky Mountains in cooperation with the North America zonal mean flow isvery weak.Calculations from observational data of the vertical profile of critical wavenumber for vertically propagatingwaves imply that the tropospheric wavenumber 1 perturbation can hardly penetrate the North America tropopause up-wards,whereas it can freely propagate through the East Asia tropopause into the stratosphere.Two-dimensional E-Pcross-sections obtained from both observational data and simulated results also demonstrate that waves excited by theRocky Mountains are refracted towards low latitudes in the troposphere during their upward propagation:whereas,inaddition to the above mentioned equatorward leaning branch,the wavenumber 1 and 2 planetary waves excited by theTibetan Plateau possess another branch which is refracted to high latitudes during upward propagation and penetratesthe tropopause into the stratosphere.It is therefore concluded that the difference in the horizontal and vertical wavepropagations in the two hemispheres is a result of the different dynamical forcing induced by the two main mountains inthe Northern Hemisphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号