首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   3篇
  国内免费   6篇
测绘学   4篇
大气科学   10篇
地球物理   3篇
地质学   2篇
海洋学   6篇
天文学   1篇
自然地理   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   2篇
  2010年   1篇
  2008年   2篇
  2006年   3篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有28条查询结果,搜索用时 328 毫秒
21.
Beach dune systems are important for coastal zone ecosystems as they provide natural sea defences that dissipate wave energy. Geomorphological models of this near-shore topography require site-specific sediment composition, grain size and moisture content as inputs. Hyperspectral, field radiometry and LiDAR remote sensing can be used as tools by providing synoptic maps of these properties. However, multi-remote sensing of near-shore beach images can only be interpreted if there are adequate bio-geophysical or empirical models for information extraction. Our aim was thus to model the effects of varying sediment properties on the reflectance in both field and laboratory conditions within the FHyL (Field Spectral Libraries, Airborne Hyperspectral Images and Topographic LiDAR) procedure, using a multisource dataset (airborne Hyperspectral – MIVIS and topographic LiDAR – Hawk-eye II and field radiometry). The methodology consisted of (i) acquisition of simultaneous multi-source datasets (airborne Hyperspectral – MIVIS and topographic LiDAR – Hawk-eye) (ii) hyperspectral measurements of sediment mixtures with varying physical characteristics (moisture, grain size and minerals) in field and laboratory conditions, (iii) determination and quantification of specific absorption features, and (iv) correlation between the absorption features and physical parameters cited above.Results showed the potential of hyperspectral signals to assess the effect of moisture, grain-size and mineral composition on sediment properties.  相似文献   
22.
The potential of the short-wave infrared (SWIR) bands to detect dry-season vegetation mass and cover fraction is investigated with ground radiometry and MODIS data, confronted to vegetation data collected in rangeland and cropland sites in the Sahel (Senegal, Niger, Mali). The ratio of the 1.6 and 2.1 μm bands (called STI) acquired with a ground radiometer proved well suited for grassland mass estimation up to 2500 kg/ha with a linear relation (r2 = 0.89). A curvilinear regression is accurate for masses ranging up to 3500 kg/ha. STI proved also well suited to retrieve vegetation cover fraction in crop fields, fallows and rangelands. Such dry-season monitoring, with either ground or satellite data, has important applications for forage, erosion risk and fire risk assessment in semi-arid areas.  相似文献   
23.
PRECIPITABLE WATER MEASUREMENTS WITH SUN-PHOTOMETER   总被引:6,自引:0,他引:6       下载免费PDF全文
In this paper a method is described of retrieving precipitable water from sun-photometermeasurements.The quantitative relationship between water vapor transmission and precipitablewater is established by means of LOWTRAN 7 model.Calibration of the water vapor absorptionchannel is made through a modified Langley method.The good agreement between the sun-photometer and radiosonde water vapor retrieval indicates that this method is feasible.The sun-photometer is operated at Hefei to monitor the precipitable water within one yearperiod.Characteristics of both diurnal evolution and within-one-year variation of the precipitablewater and their relation with synoptic system as well as surface dew-point temperature arepresented and analyzed.Errors in the retrieved precipitable water from the sun-photometermeasurements are also calculated and discussed.  相似文献   
24.
An autonomous above-water radiometer was operated during the summer of 2005 on the Gustaf Dalén Lighthouse Tower (GDLT) off the Swedish coast in the Baltic Proper. Normalized water leaving radiances, LWN(λ), produced from measurements performed with the autonomous system at various center-wavelengths λ in the 412–675 nm spectral range, were applied within the context of water quality monitoring and satellite ocean color validation activities. Specifically these in situ radiometric data were used to determine the chlorophyll a concentration through a regional band-ratio algorithm and to assess LWN(λ) derived from top-of-atmosphere Moderate Resolution Imaging Spectroradiometer (MODIS) observations. The in situ measurements collected during a bloom occurring in July 2005 were also used to investigate the spectral and small scale temporal-spatial variability of LWN(λ) in the presence of cyanobacteria.  相似文献   
25.
An experimental study on the photocarrier radiometry signals of As+ ion implanted silicon wafers before and after rapid thermal annealing is performed. The dependences of photocarrier radiometry amplitude on ion implantation dose (1×1011--1×1016/cm2), implantation energy (20--140 keV) and subsequent isochronical annealing temperature (500--1100 du are investigated. The results show that photocarrier radiometry signals are greatly enhanced for implanted samples annealed at high temperature, especially for those with a high implantation dose. The reduced surface recombination rate resulting from a high built-in electric field generated by annealing-activated impurities in the pn junction is believed to be responsible for the photocarrier radiometry signal enhancement. Photocarrier radiometry is contactless and can therefore be used as an effective in-line tool for the thermal annealing process monitoring of the ion-implanted wafers in semiconductor industries.  相似文献   
26.
The National Airborne Field Experiment 2006 (NAFE’06) was conducted during a three week period of November 2006 in the Murrumbidgee River catchment, located in southeastern Australia. One objective of NAFE’06 was to explore the suitability of the area for SMOS (Soil Moisture and Ocean Salinity) calibration/validation and develop downscaling and assimilation techniques for when SMOS does come on line. Airborne L-band brightness temperature was mapped at 1 km resolution 11 times (every 1–3 days) over a 40 by 55 km area in the Yanco region and 3 times over a 40 by 50 km area that includes Kyeamba Creek catchment. Moreover, multi-resolution, multi-angle and multi-spectral airborne data including surface temperature, surface reflectance (green, read and near infrared), lidar data and aerial photos were acquired over selected areas to develop downscaling algorithms and test multi-angle and multi-spectral retrieval approaches. The near-surface soil moisture was measured extensively on the ground in eight sampling areas concurrently with aircraft flights, and the soil moisture profile was continuously monitored at 41 sites. Preliminary analyses indicate that (i) the uncertainty of a single ground measurement was typically less than 5% vol. (ii) the spatial variability of ground measurements at 1 km resolution was up to 10% vol. and (iii) the validation of 1 km resolution L-band data is facilitated by selecting pixels with a spatial soil moisture variability lower than the point-scale uncertainty. The sensitivity of passive microwave and thermal data is also compared at 1 km resolution to illustrate the multi-spectral synergy for soil moisture monitoring at improved accuracy and resolution. The data described in this paper are available at www.nafe.unimelb.edu.au.  相似文献   
27.
Contemporary research into extratropical cloud systems optimizes the increase in resolution of visible (VIS) and thermal infra‐red (IR) sensors, and the ability to retrieve wind and atmospheric moisture variables at mesoscales using microwave radiometry. These passively‐acquired remote sensing data are used to develop synoptic climatological (conceptual and simple statistical) ‘models’ of mesoscale cyclones in cold‐air outbreaks (mesocyclones, ‘polar lows’) occurring over the otherwise data‐void southern oceans. Mesocyclones present a limitation to successful weather forecasting for New Zealand and coastal Chile, southern Australia and South Africa, during the cold season. The synoptic climatological analyses show that: 1) the patterns of mesocyclone cloud vortex origins, movement and dissipation (‘mesocyclone regimes’), exhibit spatial dependence and have associations with upper‐ocean conditions; 2) mesocyclone ‘outbreaks’ are embedded within characteristic larger‐scale anomaly fields of tropospheric pressure, height, and layer thickness (mean temperature); and 3) composite (statistical average) models of cloud system structure based on the microwave retrievals of marine weather reveal mesocyclones to be relatively dry in comparison with synoptic cyclones, yet very windy. These analyses should permit the development of methods to better predict these important cold‐season storms over southern middle latitudes, and a fuller assessment of their significance for the larger hydroclimatic system.  相似文献   
28.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号