首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1097篇
  免费   144篇
  国内免费   347篇
测绘学   179篇
大气科学   148篇
地球物理   124篇
地质学   649篇
海洋学   154篇
天文学   13篇
综合类   67篇
自然地理   254篇
  2024年   4篇
  2023年   27篇
  2022年   60篇
  2021年   54篇
  2020年   55篇
  2019年   81篇
  2018年   61篇
  2017年   52篇
  2016年   72篇
  2015年   43篇
  2014年   76篇
  2013年   80篇
  2012年   55篇
  2011年   58篇
  2010年   67篇
  2009年   65篇
  2008年   61篇
  2007年   81篇
  2006年   70篇
  2005年   47篇
  2004年   52篇
  2003年   25篇
  2002年   22篇
  2001年   36篇
  2000年   31篇
  1999年   29篇
  1998年   29篇
  1997年   18篇
  1996年   25篇
  1995年   20篇
  1994年   28篇
  1993年   25篇
  1992年   17篇
  1991年   23篇
  1990年   10篇
  1989年   11篇
  1988年   4篇
  1987年   9篇
  1985年   4篇
  1984年   1篇
排序方式: 共有1588条查询结果,搜索用时 15 毫秒
31.
Previous studies of metapelitic rocks from the core of the southernBrittany metamorphic belt suggest a complex clockwise PTevolution. We use pseudosections calculated for an average subaluminousmetapelite composition in the MnNCKFMASH system and averagePT calculations to investigate in more detail the metamorphicevolution of these rocks. For migmatites, sequential occurrenceof kyanite, kyanite + staurolite and sillimanite suggests thata prograde evolution to P > 8 kbar at T  相似文献   
32.
Multiple-point simulation is a newly developed geostatistical method that aims at combining the strengths of two mainstream geostatistical methods: object-based and pixel-based methods. It maintains the flexibility of pixel-based algorithms in data conditioning, while enhancing its capability of reproducing realistic geological shapes, which is traditionally reserved to object-based algorithms. However, the current snesim program for multiple-point simulation has difficulty in reproducing large-scale structures, which have a significant impact on the flow response. To address this problem, we propose to simulate along a structured path based on an information content measure. This structured path accounts for not only the information from the data, but also some prior structural information provided by geological knowledge. Various case studies show a better reproduction of large-scale structures. This concept of simulating along a structured path guided by information content can be applied to any sequential simulation algorithms, including traditional variogram-based two-point geostatistical algorithms.  相似文献   
33.
The Qinglongshan eclogites in the Southern Sulu ultrahigh pressure metamorphic (UHPM) terrane show very different retrograded textures from their counterparts in the Northern Sulu terrane, implying a different thermal history. Scanning electron and optical microscope observations indicate that the peak assemblage of the Qinglongshan eclogite is anhydrous, composed of Grt + OmpI + Rt + (Ky + coesite). These primary minerals were replaced by second and third stage minerals, resulting in symplectite pseudomorphs or coronas. The following relationships are inferred: OmpI → OmpII + Ab + Fe‐oxide symplectite (type I) and Rt → Rt + Ilm intergrowth; and, Ky → Pg, OmpII (+Pl) → Amp (+Pl) symplectite (type II), and Grt → Prg (+Fe‐oxide). Mineral chemistry and mass‐balance demonstrate that the pseudomorphed textures were developed by metasomatism involving dissolution and precipitation intensified by fluids along grain boundaries. The formation of symplectite type I produced Fe, Mg and Na but consumed Ca and Si. The Mg and Fe diffused to garnet where exchange of (Mg, Fe) with Ca of the garnet resulted in compositional zonation with decreased Ca towards the edge of garnet grains where Ca was consumed during symplectite formation. The replacement of kyanite by paragonite consumed the extra Na. In the later stage, fluid infiltration partially transformed symplectite type I to type II, and narrow rims of pargasite resorbed garnet from their boundaries. Mass balance suggests that the transformation and resorption would have been coupled during fluid infiltration. In the latest stage, epidote and quartz were precipitated at very late stage as a result of fluid activity along microfractures. Tentative P–T conditions based on mineral reactions and thermocalc software suggest that the retrograded eclogite did not record the granulite facies retrograde evolution characteristic of eclogites from the Northern Sulu terrane. The difference in retrograde evolution between the Southern and Northern Sulu eclogites suggests a different exhumation history.  相似文献   
34.
基于受限汉语的GIS路径重建研究   总被引:4,自引:1,他引:4  
刘瑜  高勇  林报嘉  邬伦 《遥感学报》2004,8(4):323-330
主要研究基于自然语言 (汉语 )的GIS路径重建问题 ,通过分析带有路径表述信息的汉语文本 ,建立了汉语的NLRP句法模型 ,它是由带有空间语义的动作以及作为动作对象的地理要素构成的集合。考虑到自然语言理解实现的需求 ,论文基于NLRP句法模型定义了受限汉语的NLRP文法 ,在此基础上 ,描述了路径重建算法PRA ,并探讨了算法实现中由于空间认知原因带来的不确定性问题以及其解决方案。最后 ,基于该算法进行了相关实例研究 ,从而验证了该算法的正确性  相似文献   
35.
36.
A metamorphic petrological study, in conjunction with recent precise geochronometric data, revealed a complex PTt path for high-grade gneisses in a hitherto poorly understood sector of the Mesoproterozoic Maud Belt in East Antarctica. The Maud Belt is an extensive high-grade, polydeformed, metamorphic belt, which records two significant tectono-thermal episodes, once towards the end of the Mesoproterozoic and again towards the late Neoproterozoic/Cambrian. In contrast to previous models, most of the metamorphic mineral assemblages are related to a Pan-African tectono-thermal overprint, with only very few relics of late Mesoproterozoic granulite-facies mineral assemblages (M1) left in strain-protected domains. Petrological and mineral chemical evidence indicates a clockwise PTt path for the Pan-African orogeny. Peak metamorphic (M2b) conditions recorded by most rocks in the area (T = 709–785 °C and P = 7.0–9.5 kbar) during the Pan-African orogeny were attained subsequent to decompression from probably eclogite-facies metamorphic conditions (M2a).The new data acquired in this study, together with recent geochronological and geochemical data, permit the development of a geodynamic model for the Maud Belt that involves volcanic arc formation during the late Mesoproterozoic followed by extension at 1100 Ma and subsequent high-grade tectono-thermal reworking once during continent–continent collision at the end of the Mesoproterozoic (M1; 1090–1030 Ma) and again during the Pan-African orogeny (M2a, M2b) between 565 and 530 Ma. Post-peak metamorphic K-metasomatism under amphibolite-facies conditions (M2c) followed and is ascribed to post-orogenic bimodal magmatism between 500 and 480 Ma.  相似文献   
37.
Extensive high-grade polydeformed metamorphic provinces surroundingArchaean cratonic nuclei in the East Antarctic Shield recordtwo tectono-thermal episodes in late Mesoproterozoic and lateNeoproterozoic–Cambrian times. In Western Dronning MaudLand, the high-grade Mesoproterozoic Maud Belt is juxtaposedagainst the Archaean Grunehogna Province and has traditionallybeen interpreted as a Grenvillian mobile belt that was thermallyoverprinted during the Early Palaeozoic. Integration of newU–Pb sensitive high-resolution ion microprobe and conventionalsingle zircon and monazite age data, and Ar–Ar data onhornblende and biotite, with thermobarometric calculations onrocks from the H.U. Sverdrupfjella, northern Maud Belt, resultedin a more complex PTt evolution than previouslyassumed. A c. 540 Ma monazite, hosted by an upper ampibolite-faciesmineral assemblage defining a regionally dominant top-to-NWshear fabric, provides strong evidence for the penetrative deformationin the area being of Pan-African age and not of Grenvillianage as previously reported. Relics of an eclogite-facies garnet–omphaciteassemblage within strain-protected mafic boudins indicate thatthe peak metamorphic conditions recorded by most rocks in thearea (T = 687–758°C, P = 9·4–11·3kbar) were attained subsequent to decompression from P >12·9 kbar. By analogy with limited U–Pb singlezircon age data and on circumstantial textural grounds, thisearlier eclogite-facies metamorphism is ascribed to subductionand accretion around 565 Ma. Post-peak metamorphic K-metasomatismunder amphibolite-facies conditions is ascribed to the intrusionof post-orogenic granite at c. 480 Ma. The recognition of extensivePan-African tectonism in the Maud Belt casts doubts on previousRodinia reconstructions, in which this belt takes a pivotalposition between East Antarctica, the Kalahari Craton and Laurentia.Evidence of late Mesoproterozoic high-grade metamorphism duringthe formation of the Maud Belt exists in the form of c. 1035Ma zircon overgrowths that are probably related to relics ofgranulite-facies metamorphism recorded from other parts of theMaud Belt. The polymetamorphic rocks are largely derived froma c. 1140 Ma volcanic arc and 1072 ± 10 Ma granite. KEY WORDS: Maud Belt; Pan-African orogeny; geochronology; PTt path, East Antarctica  相似文献   
38.
Conditions of the prograde, peak‐pressure and part of the decompressional P–T path of two Precambrian eclogites in the eastern Sveconorwegian orogen have been determined using the pseudosection approach. Cores of garnet from a Fe–Ti‐rich eclogite record a first prograde and syn‐deformational stage along a Barrovian gradient from ~670 °C and 7 kbar to 710 °C and 8.5 kbar. Garnet rims grew during further burial to 16.5–19 kbar at ~850–900 °C, along a steep dP/dT gradient. The pseudosection model of a kyanite‐bearing eclogite sample of more magnesian bulk composition confirms the peak conditions. Matrix reequilibration associated with subsequent near‐isothermal decompression and partial exhumation produced plagioclase‐bearing symplectites replacing kyanite and clinopyroxene at an estimated 850–870 °C and 10–11 kbar. The validity of the pseudosections is discussed in detail. It is shown that in pseudosection modelling the fractionation of FeO in accessory sulphides may cause a significant shift of field boundaries (here displaced by up to 1.5 kbar and 70 °C) and must not be neglected. Fast burial, exhumation and subsequent cooling are supported by the steepness of both the prograde and the decompressional P–T paths as well as the preservation of garnet growth zoning and the symplectitic reaction textures. These features are compatible with deep tectonic burial of the eclogite‐bearing continental crust as part of the underthrusting plate (Eastern Segment, continent Baltica) in a collisional setting that led to an effectively doubled crustal thickness and subsequent exhumation of the eclogites through tectonic extrusion. Our results are in accordance with regional structural and petrological relationships, which demonstrate foreland‐vergent partial exhumation of the eclogite‐bearing nappe along a basal thrust zone and support a major collisional stage at c. 1 Ga. We argue that the similarities between Sveconorwegian and Himalayan eclogite occurrences emphasize the modern style of Grenvillian‐aged tectonics.  相似文献   
39.
Ultrahigh temperature (UHT) granulites in the Eastern Ghats Province (EGP) have a complex P–T–t history. We review the P–T histories of UHT metamorphism in the EGP and use that as a framework for investigating the P–T–t history of Mg–Al‐rich granulites from Anakapalle, with the express purpose of trying to reconcile the down‐pressure‐dominated P–T path with other UHT localities in the EGP. Mafic granulite that is host to Mg–Al‐rich metasedimentary granulites at Anakapalle has a protolith age of c. 1,580 Ma. Mg–Al‐rich metasedimentary granulites within the mafic granulite at Anakapalle were metamorphosed at UHT conditions during tectonism at 960–875 Ma, meaning that the UHT metamorphism was not the result of contact metamorphism from emplacement of the host mafic rock. Reworking occurred during the Pan‐African (c. 600–500 Ma) event, and is interpreted to have produced hydrous assemblages that overprint the post‐peak high‐T retrograde assemblages. In contrast to rocks elsewhere in the EGP that developed post‐peak cordierite, the metasedimentary granulites at Anakapalle developed post‐peak, generation ‘2’ reaction products that are cordierite‐absent and nominally anhydrous. Therefore, rocks at Anakapalle offer the unique opportunity to quantify the pressure drop that occurred during so‐called M2 that affected the EGP. We argue that M2 is either a continuation of M1 and that the overall P–T path shape is a complex counter‐clockwise loop, or that M1 is an up‐temperature counter‐clockwise deviation superimposed on the M2 path. Therefore, rather than the rocks at Anakapalle having a metamorphic history that is apparently anomalous from the rest of the EGP, we interpret that other previously studied localities in the EGP record a different part of the same P–T path history as Anakapalle, but do not preserve a significant record of pressure decrease. This is due either to the inability of refractory rocks to extensively react to produce a rich mineralogical record of pressure decrease, or because the earlier high‐P part of the rocks history was erased by the M1 loop. Irrespective of the specific scenario, models for the tectonic evolution of the EGP must take the substantial pressure decrease during M2 into account, as it is probable the P–T record at Anakapalle is a reflection of tectonics affecting the entire province.  相似文献   
40.
Structural, magnetic and gravity trends of the southern New England Orogen (SNEO) indicate four oroclinal structures, none conclusively confirmed paleomagnetically. Curved structures of the Tamworth Belt (TB)—a continental forearc exposed across six tectono-stratigraphic blocks with interlinked Carboniferous stratigraphies and extensive ignimbritic rocks known to retain primary magnetisations despite prevalent overprinting—are prospective to oroclinal testing through comparison of Carboniferous pole paths for individual blocks. Pole paths (a) have been established for the Rocky Creek and Werrie blocks (northwestern/western TB), (b) are described herein for the Rouchel Block (southwestern TB), and (c) are forthcoming for the Gresford and Myall blocks (southern/southeastern TB). The Rouchel path derives from detailed paleomagnetic, rock magnetic and magnetic fabric studies. Thermal, alternating field and liquid nitrogen demagnetisations show a low-temperature overprint, attributed to late Oligocene weathering, and high-temperature (HT) primary and overprint components in both magnetite and hematite carriers, showing slight, systematic, directional differences with hematite providing the better cleaned site poles. Seven primary mean-site poles of Tournaisian and mainly Visean age and three overprint poles show six positive fold tests, five at 95% or higher confidence levels. Two dispersed groupings of intermediate (IT) and HT overprint site poles of Permian and Permo-Triassic age are attributed to early and late phases in oroclinal evolution of the SNEO. HT and IT/HT overprint site poles of mid-Carboniferous age are attributed to Variscan Australia–Asia convergence. Individual pole paths for the Rocky Creek, Werrie and Rouchel blocks show no noticeable rotation between them, indicating primary curvature for the southwestern TB. Their integrated SNEO pole path establishes a reference frame for determining rotations of the southern and southeastern TB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号