首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3385篇
  免费   778篇
  国内免费   1366篇
测绘学   73篇
大气科学   2431篇
地球物理   500篇
地质学   273篇
海洋学   974篇
天文学   617篇
综合类   113篇
自然地理   548篇
  2024年   23篇
  2023年   91篇
  2022年   132篇
  2021年   157篇
  2020年   173篇
  2019年   255篇
  2018年   174篇
  2017年   191篇
  2016年   179篇
  2015年   195篇
  2014年   249篇
  2013年   273篇
  2012年   287篇
  2011年   264篇
  2010年   202篇
  2009年   307篇
  2008年   239篇
  2007年   320篇
  2006年   254篇
  2005年   216篇
  2004年   184篇
  2003年   170篇
  2002年   148篇
  2001年   114篇
  2000年   116篇
  1999年   86篇
  1998年   89篇
  1997年   63篇
  1996年   84篇
  1995年   60篇
  1994年   45篇
  1993年   55篇
  1992年   34篇
  1991年   33篇
  1990年   13篇
  1989年   12篇
  1988年   5篇
  1987年   9篇
  1986年   1篇
  1985年   7篇
  1984年   5篇
  1983年   5篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1954年   1篇
排序方式: 共有5529条查询结果,搜索用时 46 毫秒
11.
Blazars are the only (with one or two exceptions) extragalactic objects which were detected and identified at gamma-ray energies so far. It is suspected that most of the unidentified gamma-ray sources may be the blazars as well. Because the entire electromagnetic spectrum of these objects is dominated by non-thermal radiation from relativistically moving jets, the effects such as the Klein–Nishina regime in the Compton scattering may play a major role in shaping some parts of the blazar spectrum. Within the framework of external radiation Compton model, we present how these effect influence the spectra of blazars for which the production of gamma rays is dominated by Comptonization of external radiation.  相似文献   
12.
I re-examine the brightness temperature problem in PKS 0405-385, which is an extreme intra-day variable radio quasar with an inferred brightness temperature of  ∼5 × 1014 K  at 5 GHz, well above the Compton catastrophe limit of  ∼1011 K  that is reached when the synchrotron photon energy density exceeds the energy density of the magnetic field. If one takes into account the uncertainty in the distance to the ionized clouds responsible for interstellar scintillation causing rapid intra-day variability in PKS 0405-385, it is possible that the brightness temperature could be as low as  ∼1013 K  at 5 GHz, or even lower. The radio spectrum can be fitted by optically thin emission from mono-energetic electrons, or an electron spectrum with a low-energy cut-off such that the critical frequency of the lowest energy electrons is above the radio frequencies of interest. If one observes optically thin emission along a long narrow emission region, the average energy density in the emission region can be many orders of magnitude lower than calculated from the observed intensity if one assumed a spherical emission region. I discuss the physical conditions in the emission region and find that the Compton catastrophe can then be avoided using a reasonable Doppler factor. I also show that MeV to 100-GeV gamma-ray emission at observable flux levels should be expected from extreme intra-day variable sources such as PKS 0405-385.  相似文献   
13.
Interplanetary field enhancements were first discovered in the vicinity of Venus. These events are characterised by an increase in the magnitude of the heliospheric magnetic field with a near-symmetrical, sometimes thorn-shaped profile, and last from minutes to hours. Surveys of the events near Venus and Earth indicated clustering of the events in inertial space, which suggested that their sources were Solar System objects other than the Sun. A survey is presented of strong events of this type detected by the Ulysses spacecraft from 1990 to late 2001. Most of the events are accompanied by a discontinuity in the field direction near the events' centres. Other discontinuities are often symmetrical about the enhancement. The majority of events last less than two hours. When examined as a whole, the events tend to be accompanied by subtle changes in some plasma parameters. The majority of the enhancements are accompanied by magnetic holes on their fringes. The enhancements' occurrence rate increases with decreasing heliocentric distance. Possible formation mechanisms are discussed. No link was found with solar, or solar wind sources. Several aspects of the survey results are consistent with an origin related to cometary dust trails. Possible processes associated with a dust-solar wind interaction are discussed.  相似文献   
14.
Gamma-ray burst remnants become trans-relativistic typically in days to tens of days, and they enter the deep Newtonian phase in tens of days to months, during which the majority of shock-accelerated electrons will no longer be highly relativistic. However, a small portion of electrons are still accelerated to ultra-relativistic speeds and are capable of emitting synchrotron radiation. The distribution function for electrons is re-derived here so that synchrotron emission from these relativistic electrons can be calculated. Based on the revised model, optical afterglows from both isotropic fireballs and highly collimated jets are studied numerically, and compared to analytical results. In the beamed cases, it is found that, in addition to the steepening due to the edge effect and the lateral expansion effect, the light curves are universally characterized by a flattening during the deep Newtonian phase.  相似文献   
15.
We argue that γ-ray sources observed in the direction of the Cygnus OB2 association in the GeV and TeV energy range are due to a pulsar that was created by a supernova a few tens of thousands of years ago. The GeV emission is produced by a middle-aged pulsar, a factor of 2 older than the Vela pulsar. The TeV emission is produced by high-energy hadrons and/or leptons accelerated in pulsar wind nebulae. We suggest, moreover, that the excess of cosmic rays at ∼1018 eV observed from the direction of the Cygnus region can also be related to the appearance of this very energetic pulsar in the Cyg OB2 association. Some of the relativistic hadrons, captured in strong magnetic fields of a high-density region of Cyg OB2, produce neutrons and γ-rays in collisions with matter. These neutrons can arrive from Cyg OB2, creating an excess of cosmic rays.  相似文献   
16.
17.
Examples of extreme events of solar wind and their effect on geomagnetic conditions are discussed here. It is found that there are two regimes of high speed solar wind streams with a threshold of ∼ 850 km s-1. Geomagnetic activity enhancement rate (GAER) is defined as an average increase in Ap value per unit average increase in the peak solar wind velocity (Vp) during the stream. GAER was found to be different in the two regimes of high speed streams with +ve and-ve IMF. GAER is 0.73 and 0.53 for solar wind streams with +ve and -ve IMF respectively for the extremely high speed streams (< 850 km s-1). This indicates that streams above the threshold speed with +ve IMF are 1.4 times more effective in enhancing geomagnetic activity than those with -ve IMF. However, the high speed streams below the threshold with -ve IMF are 1.1 times more effective in enhancing geomagnetic activity than those with +ve IMF. The violent solar activity period (October–November 2003) of cycle 23 presents a very special case during which many severe and strong effects were seen in the environment of the Earth and other planets; however, the z-component of IMF (Bz) is mostly positive during this period. The most severe geomagnetic storm of this cycle occurred when Bz was positive.  相似文献   
18.
The influence of magnetic fields on the energy level populations of atoms is firstly studied by analysing the Stokes profiles of Fe  i 6302.5 forming in the solar magnetized atmosphere, with the aid of a departure factor defined to evaluate the deviation from the normal Boltzmann distribution without a magnetic field. This factor is directly related to the ratio of line-source function to the continuum one. The relationship between the departure and the magnetic field reveals an effect that the magnetic field induces an exponential increase in the level population of the lower level of Fe  i 6302.5 (Landé factor   g = 2.5  ) with the field strength. This indicates that the magnetic field can cause the redistribution of populations of those levels whose Landé factors are non-zero. Therefore, this effect should be included in the calculation of the statistical equilibrium. Secondly, an experiment utilizing the Hg5461 line in the laboratory on the Earth is carried out to reveal that the exponential relation is independent of variations in temperature, and the excitation is completely magneto-induced. Finally, the exponential relation is explained by taking account of the magnetic energy in the Boltzmann distribution.  相似文献   
19.
20.
A theoretical model for wind‐sand flow is developed by considering the coupling between wind flow and sand particle motion, the latter subject to the Magnus effect, under different atmospheric stability conditions. Using this model, the characteristics of the wind‐sand flow are discussed in detail. The results show that the atmospheric stability and the Magnus effect both have a strong influence on wind profiles and on the trajectories of sand particles. This approach produces results with characteristics that differ from those previously reported; the latter only applying to atmospheric conditions of neutral stability. The saltating sand reaches a greater height under non‐neutral stability than under neutral stability, while the maximum horizontal distance is greater under unstable conditions and is smaller under stable conditions than under conditions of neutral stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号