首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   4篇
  国内免费   14篇
大气科学   10篇
地球物理   10篇
地质学   1篇
海洋学   22篇
天文学   1篇
综合类   4篇
自然地理   3篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2014年   4篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2006年   4篇
  2002年   3篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
排序方式: 共有51条查询结果,搜索用时 343 毫秒
41.
The physiology of fishes in the early stages of development remains poorly assessed despite the importance of identifying energy bottlenecks in organisms faced with changing environmental conditions. This study describes the metabolic activity of dusky kob Argyrosomus japonicus throughout its early development, from hatchling to settlement stage. Standard, routine and active metabolic rates (SMR, RMR and AMR, respectively) were assessed to determine the species’ metabolic scope and identify how metabolism changes with growth and development. Distinct metabolic changes occurred in association with developmental changes during the early life stages, with flexion-stage larvae showing significantly reduced metabolic scope (approx. 0.30 µmol O2 ind.–1 h–1), representing an energy bottleneck. Based on these findings, it is likely that larvae of A. japonicus are most susceptible to environmental perturbations during flexion. The variability of metabolic rates during the diel cycle was also assessed and revealed that the early-stage larvae showed no preference for daylight, although settlement-stage juveniles were more active during daylight hours (RMR = 12.78 µmol O2 ind.–1 h–1) than at night (RMR = 5.87 µmol O2 ind.–1 h–1). These results suggest that metabolic measurements of the SMR of A. japonicus larvae can be taken at any time of the diel cycle until the settlement phase, when readings should take place at night.  相似文献   
42.
43.
44.
A turbulence data set collected by the research aircraft Hercules and Falcon in the planetary boundary layer (PBL) over the North Sea during Rayleigh-Bénard convection (RBC) is analysed. Altogether nearly three hundred cell passages at different levels and in two different flight directions were sampled.The convective boundary-layer height (H) was about 1 km, and the RBC cells had a diameter D of roughly 2–3 km, resulting in an aspect ratio A = D/H 2–3. This value is also found in the case of RBC in laboratory-scale flows, whereas most of the recent PBL experimental work reports convection PBL rolls with A 3 and mesoscale cellular convection (MCC) with A 10–40 over the oceans.The large number of RBC cell passages made it possible to composite their average structure. Due to the more complex three-dimensional structure and the importance of thermals to the RBC dynamics, spectral, temporal and spatial decompositions and model calculations were necessary to illuminate structure, dynamics, energetics and organisation. The final impression is that the structure of RBC in the PBL is given by a honeycomb-like arrangement of short-lived mixed-layer thermals with more passive downward motions in between. The regularity of the Cu-cloud cover results partly from the more stationary flow in the cloud-free cell centres. On the other hand it is shown that active as well as inactive clouds contribute to the cloud cover. Thus, the PBL flow and the cloud cover are decoupled, at least temporarily and locally.Due to sparse observational and measured information about RBC occurrence and structure in the PBL, additional material was gathered, resulting in the impression that RBC is one additional realised mode of organised convection in the PBL, as has already been clarified for PBL rolls and MCC by recent investigations.  相似文献   
45.
Abstract. The removal of glycine and glucose by freshly collected adult Mytilus edulis was determined using radiolabeled substances added to ambient concentrations of dissolved organic materials in freshly collected natural sea water. Uptake rates were calculated for substrate concentrations of 0.5 μM glycine and 1.0 μM glucose and were compared with the animals' energy and nitrogen demands as measured by oxygen consumption and ammonia excretion rates. Respiration and ammonia excretion rates as well as cither glycine or glucose removal were all determined for the same animals. The mean respiration rate was 670μl O2 g-1h-1, the mean ammonia excretion rate 1.95 μg-at NH4-g-1 h-1. The calculated uptake rates were 0.48 μmol -g-1-h-1 for free amino acids and 0.44 μmol-g-1 h-1 for free simple sugars. Such uptake rates could have contributed roughly 13% of the mussels' energy requirements or 10% of the mussels' nitrogen requirements assuming the following conditions: 0.5 μM concentration of free amino acids, 1.0μM concentration of simple sugars, uptake of total amino acids at a rate based on a weighted removal rate of glycine, alanine, serine, and glutamic acid, and uptake of simple sugars at a rate equal to that of glucose removal. It is apparent that simple organic substances dissolved in sea water may be of some benefit to mussels, especially when the substances occur in concentrations typical of coastal sea water.  相似文献   
46.
Snowmelt energetics at a shrub tundra site in the western Canadian Arctic   总被引:1,自引:0,他引:1  
Snow accumulation and melt were observed at shrub tundra and tundra sites in the western Canadian Arctic. End of winter snow water equivalent (SWE) was higher at the shrub tundra site than the tundra site, but lower than total winter snowfall because snow was removed by blowing snow, and a component was also lost to sublimation. Removal of snow from the shrub site was larger than expected because the shrubs were bent over and covered by snow during much of the winter. Although SWE was higher at the shrub site, the snow disappeared at a similar time at both sites, suggesting enhanced melt at the shrub site. The Canadian Land Surface Scheme (CLASS) was used to explore the processes controlling this enhanced melt. The spring‐up of the shrubs during melt had a large effect on snowmelt energetics, with similar turbulent fluxes and radiation above the canopy at both sites before shrub emergence and after the snowmelt. However, when the shrubs were emerging, conditions were considerably different at the two sites. Above the shrub canopy, outgoing shortwave radiation was reduced, outgoing longwave radiation was increased, sensible heat flux was increased and latent flux was similar to that at the tundra site. Above the snow surface at this site, incoming shortwave radiation was reduced, incoming longwave radiation was increased and sensible heat flux was decreased. These differences were caused by the lower albedo of the shrubs, shading of the snow, increased longwave emission by the shrub stems and decreased wind speed below the shrub canopy. The overall result was increased snowmelt at the shrub site. Although this article details the impact of shrubs on snow accumulation and melt, and energy exchanges, additional research is required to consider the effect of shrub proliferation on both regional hydrology and climate. Copyright 2010 John Wiley & Sons Ltd and Crown in the right of Canada.  相似文献   
47.
Gravitational Potential Energy (GPE) change due to horizontal/isopycnal eddy diffusion and advection is examined. Horizontal/isopycnal eddy diffusion is conceptually separated into two steps: stirring and sub scale diffusion. GPE changes associated with these two steps are analyzed. In addition, GPE changes due to stirring and subscale diffusion associated with horizontal/isopycnal advection in the Eulerian coordinates are analyzed. These formulae are applied to the SODA data for the world oceans. Our analysis indicates that horizontal/isopycnal advection in Eulerian coordinates can introduce large artificial diffusion in the model. It is shown that GPE source/sink in isopycnal coordinates is closely linked to physical property distribution, such as temperature, salinity and velocity. In comparison with z-coordinates, GPE source/sink due to stir ring/cabbeling associated with isopycnal diffusion/advection is much smaller. Although isopycnal coordi nates may be a better choice in terms of handling lateral diffusion, advection terms in the traditional Eule rian coordinates can produce artificial source of GPE due to cabbeling associated with advection. Reducing such numerical errors remains a grand challenge.  相似文献   
48.
准确预测波浪作用下沿岸输沙率是沙质海岸研究领域的重要科学问题。根据数十年来国内外沿岸输沙率公式的研究进展,按研究方法对各项成果进行分类,并兼顾时间逻辑,回顾了各研究方法的发展历程及其代表性成果。对各项成果的理论基础、考虑因素、资料来源等方面进行了探讨,并采用现场原型沙、室内原型沙和室内轻质沙等实测资料,对国内外常用公式的预测准确性进行了检验。结果表明,孙林云公式与各项实测资料的吻合程度最高,在众多沿岸输沙率公式中具有明显的先进性。在此基础上,对未来可进一步深化研究的方向作出了展望。  相似文献   
49.
Using a new functional analysis tool, multiscale window transform(MWT), and the MWT-based localized multiscale energetics analysis and canonical transfer theory, this study reconstructs the Kuroshio system on three scale windows, namely,the mean flow window, the interannual-scale(low-frequency) window, and the transient eddy window, and investigates the climatological characteristics of the intricate nonlinear interactions among these windows. Significant upscale energy transfer is observed east of Taiwan, where the mean Kuroshio current extracts kinetic energy from both the interannual and eddy windows.It is found that the canonical transfer from the interannual variability is an intrinsic source that drives the eddy activities in this region. The multiscale variabilities of the Kuroshio in the East China Sea(ECS) are mainly controlled by the interaction between the mean flow and the eddies.The mean flow undergoes mixed instabilities(i.e., both barotropic and baroclinic instabilities) in the southern ECS, while it is barotropically stable but baroclinically unstable to the north. The multiscale interactions are found to be most intense south of Japan, where strong mixed instabilities occur; both the canonical transfers from the mean flow and the interannual scale are important mechanisms to fuel the eddies. It is also found that the interannual-scale energy mainly comes from the barotropically unstable jet, rather than the upscale energy transfer from the high frequency eddies.  相似文献   
50.
Baroclinic wave activity in the North Pacific exhibit peaks in late fall and early spring, and a local minimum in midwinter, when by linear baroclinic instability theory it should attain its maximum. This counterintuitive phenomenon, or"midwinter suppression"(MWM) as called, is investigated with a functional analysis apparatus, multiscale window transform(MWT), and the MWT-based theory of canonical transfer and localized multi-scale energetics analysis, together with a feature tracking technique, using the data from the European Centre for Medium-Range Weather Forecasts ReAnalysis(ERA-40). It is found that the MWM results from a variety of different physical processes, including baroclinic canonical transfer, diabatic effect, energy flux divergence, and frictional dissipation. On one hand, baroclinic canonical transfer and diabatic effect achieve their respective maxima in late fall. More transient available potential energy is produced and then converted to transient kinetic energy, resulting in a stronger storm track in late fall than in midwinter. On the other hand, in early spring, although baroclinic instability and buoyancy conversion are weak, energy flux convergences are substantially strengthened, leading to a net energy inflow into the storm track. Meanwhile, frictional dissipation is greatly reduced in spring; as a result, less transient energy is dissipated in early spring than in midwinter. It is further found that the weakening of baroclinic canonical transfer in midwinter(compared to late fall) is due to the far distance between the storm and the jet stream(located at its southernmost point), which suppresses the interaction between them. Regarding the increase in energy flux convergence in early spring, it appears to originate from the increase(enhancement) in the number(strength) of storms from the upstream into the Pacific.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号