首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7337篇
  免费   1475篇
  国内免费   1652篇
测绘学   188篇
大气科学   3378篇
地球物理   1480篇
地质学   2026篇
海洋学   634篇
天文学   181篇
综合类   327篇
自然地理   2250篇
  2024年   34篇
  2023年   92篇
  2022年   232篇
  2021年   342篇
  2020年   337篇
  2019年   343篇
  2018年   321篇
  2017年   346篇
  2016年   386篇
  2015年   422篇
  2014年   486篇
  2013年   881篇
  2012年   498篇
  2011年   465篇
  2010年   449篇
  2009年   509篇
  2008年   557篇
  2007年   523篇
  2006年   458篇
  2005年   389篇
  2004年   349篇
  2003年   335篇
  2002年   276篇
  2001年   220篇
  2000年   200篇
  1999年   177篇
  1998年   165篇
  1997年   162篇
  1996年   114篇
  1995年   86篇
  1994年   71篇
  1993年   58篇
  1992年   47篇
  1991年   30篇
  1990年   22篇
  1989年   17篇
  1988年   18篇
  1987年   10篇
  1986年   12篇
  1985年   7篇
  1984年   5篇
  1983年   3篇
  1982年   3篇
  1980年   4篇
  1978年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
The trend in Irish Sea nutrient concentrations over the last four decades has been considered to reflect changes in anthropogenic loading. Comparison of a long-term database for the Menai Strait, North Wales, with an established historic data set for the Cypris station, Isle of Man, indicates that climate also has a significant influence on observations of nutrient concentrations. Data are presented detailing long-term shifts in nitrate, phosphate and silicate measurements since the 1960s at these two fixed sampling sites in the Irish Sea. Broad systematic changes observed in all three nutrients over the decades show a rise from the 1960s through to the 1980s, followed generally by an overall decline in the 1990s. Decadal-scale salinity changes occur in the opposite sense to nutrient changes. Anthropogenic inputs from freshwater cannot fully account for observed nutrient trends, neither is there evidence for shifts in nutrient concentrations in oceanic waters over the past four decades. Climatically forced movement in the geographical position of the freshwater/seawater mixing zone over a decadal time scale could, however, give rise to the observed shifts in nutrient concentration and salinity. This cannot alter nutrient concentration and salinity per se, but causes the measurements taken at fixed sampling sites to fluctuate inversely over this time scale. It is concluded that there is complex interplay between anthropogenic loading and climate affecting the distribution of nutrients in the Irish Sea.  相似文献   
62.
The regime shift of the 1920s and 1930s in the North Atlantic   总被引:6,自引:3,他引:6  
During the 1920s and 1930s, there was a dramatic warming of the northern North Atlantic Ocean. Warmer-than-normal sea temperatures, reduced sea ice conditions and enhanced Atlantic inflow in northern regions continued through to the 1950s and 1960s, with the timing of the decline to colder temperatures varying with location. Ecosystem changes associated with the warm period included a general northward movement of fish. Boreal species of fish such as cod, haddock and herring expanded farther north while colder-water species such as capelin and polar cod retreated northward. The maximum recorded movement involved cod, which spread approximately 1200 km northward along West Greenland. Migration patterns of “warmer water” species also changed with earlier arrivals and later departures. New spawning sites were observed farther north for several species or stocks while for others the relative contribution from northern spawning sites increased. Some southern species of fish that were unknown in northern areas prior to the warming event became occasional, and in some cases, frequent visitors. Higher recruitment and growth led to increased biomass of important commercial species such as cod and herring in many regions of the northern North Atlantic. Benthos associated with Atlantic waters spread northward off Western Svalbard and eastward into the eastern Barents Sea. Based on increased phytoplankton and zooplankton production in several areas, it is argued that bottom-up processes were the primary cause of these changes. The warming in the 1920s and 1930s is considered to constitute the most significant regime shift experienced in the North Atlantic in the 20th century.  相似文献   
63.
Abstract. Aquatina lake is a brackish basin, connected with the Adriatic Sea along the mast of Apulia (Italy), with a mean salinity of 26%. The abundance and biomass of fifteen polychaete species were recorded by monthly samples in a pilot area of the lake from February 1989 to February 1990. Naineris laevigata was dominant, both in number of individuals and biomass. During 1990, obstruction of freshwater inflow to the lake caused an increase in salinity up to 4O%, followed by some changes in the polychaete community. Noromasrus hiericeus became dominant, and the abundances of the other species decreased except for Naineris laevipru . Salinity assumed normal values after three months, but community responded slowly becauie the massive presence of N. latericeus inhibited the recovery of other species. An abiotic disturbance, followed by a biotic disturbance, altered the structure of the polychaete community.  相似文献   
64.
65.
Abstract. In all scagrass species investigated, rhizomes were the main storage organs for soluble carbohydrate reserves, and the highest levels were found in Cymodocea nodosa (U cria ) A scherson . Sucrose was the primary soluble carbohydrate identified in Posidonia oceanica (L.) D elile , and Zostera noltii H ornem . This disaccharide was dominant in Cymodocea nodosa roots, as well as in its rhizome in winter. Myo-inositol was the main cyclitol in Zostera noltii. In Cymodocea nodosa leaves 1-chiro-inositol was the main sugar component; it was also present to a lesser extent in the roots and rhizomes. The amounts of glucose and fructose were correlated with growth to a certain extent in all species. Higher amounts of starch were stored in the rhizomes of Posidonia oceanica and Zostera noltii. The energy content of Mediterranean scagrasses was significantly higher than in tropical species. No distinct seasonal trend in energy content could be observed.  相似文献   
66.
Abstract. Seasonal changes in nitrogen, free amino acids, and carbon were investigated in the three Mediterranean seagrasses Posidonia oceanica, Cymodocea nodosa , and Zostera noltii. Leaves, rhizomes, roots, as well as dead plant material were analysed separately. Highest N-concentrations were obtained in the winter months, regardless of species or plant part. In contrast to the other two species, the N-content in Posidonia was higher in the rhizomes than in the leaves.
In the investigated species, marked differences in the free amino acid (FAA) composition were detected between species: Proline, lacking in Posidonia , was the main component in Cymodocea. In Posidonia , FAA decreased from 320umol g-1 (dry wt) in leaf sheaths to 1.5 umol g-1 (dry wt) in the leaf tips. The function of proline as a possible storage and/or stress metabolite is discussed.
High C/N values in dead P. oceanica and C. nodosa rhizomes as well as in P. oceanica wrack seem to be related to considerable resistance to decomposition. Low C/N ratios did not increase in detached C. nodosa and Z. noltii leaves, which began to decompose shortly after detachment from the plants.  相似文献   
67.
Storms and shoreline retreat in the southern Gulf of St. Lawrence   总被引:1,自引:0,他引:1  
Storms play a major role in shoreline recession on transgressive coasts. In the southern Gulf of St. Lawrence (GSL), southeastern Canada, long-term relative sea-level rise off the North Shore of Prince Edward Island has averaged 0.3 m/century over the past 6000 years (>0.2 m/century over 2000 years). This has driven long-term coastal retreat at mean rates >0.5 m/a but the variance and details of coastal profile response remain poorly understood. Despite extensive sandy shores, sediment supply is limited and sand is transferred landward into multidecadal to century-scale storage in coastal dunes, barrier washover deposits, and flood-tidal delta sinks. Charlottetown tide-gauge records show mean relative sea-level rise of 3.2 mm/a (0.32 m/century) since 1911. A further rise of 0.7±0.4 m is projected over the next 100 years. When differenced from tidal predictions, the water-level data provide a 90-year record of storm-surge occurrence. Combined with wind, wave hindcast, and sea-ice data, this provides a catalogue of potentially significant coastal storms. We also document coastal impacts from three recent storms of great severity in January and October 2000 and November 2001. Digital photogrammetry (1935–1990) and shore-zone surveys (1989–2001) show large spatial and temporal variance in coastal recession rates, weakly correlated with the storm record, in part because of wave suppression or coastal protection by sea ice. Large storms cause rapid erosion from which recovery depends in part on local sand supply, but barrier volume may be conserved by washover deposition. Barrier shores with dunes show high longshore and interdecadal variance, with extensive multidecadal healing of former inlet and overwash gaps. This reflects recovery from an episode of widespread overwash prior to 1935, possibly initiated by intense storms or groups of storms in the latter half of the 19th century. With evidence from the storms of 2000–2001, this points to the importance of storm clustering on scales of weeks to years in determining erosion vulnerability, as well as the need for a long-term, large-scale perspective in assessing coastal stability. The expected acceleration in relative sea-level rise, together with projections of increasing storm intensity and greatly diminished winter ice cover in the southern GSL, implies a significant increase in coastal erosion hazards in future.  相似文献   
68.
69.
A study of an expanding seagrass bed on the south-west coast of British Columbia, Canada involved documentation and explanation of the pattern of expansion of the vegetation as well as documentation and experimental investigation of the accompanying changes in the distribution of infaunal invertebrates. Expansion followed a major environmental change, improved water clarity initiated in 1969 when a causeway blocked access to the site for silty Fraser River water. The original eelgrass (Zostera marina) bed expanded landward over 30 m year−1, probably causing more and more water to be retained in the bed at low tide and thus improving its own habitat. More rapid expansion occurred from 1979–1983 after Z.japonica colonized at the landward edge of the eelgrass bed and in a separate intertidal area. Expansion ceased around 1983 coincident with, but probably independent of, further construction.Burrowing shrimp (Callianassa californiensis) decreased in abundance between 1977 and 1984 in areas where the two seagrasses colonized. Short-term experiment over one summer and fall showed that removal of all shoots allowed adult shrimp and tube worms to colonize the sediment while addition of shoots of Z. japonica by transplanting caused temporary decreases in shrimp abundance. After a few weeks an established shrimp population destroyed the transplants. Among reasonable alternate hypotheses for the decline in Callianassa, the effect of sediment texture can be eliminated, but either direct negative effects of seagrass, i.e. inhibition of the burrowing of adult shrimp or of settlement of juveniles, or indirect effects, i.e. the harboring of more predators of shrimp in seagrass beds, deserve further study.  相似文献   
70.
Changes in the biomass and species composition of phytoplankton may reflect major shifts in environmental conditions. We investigated relationships between the late summer biomass of different phytoplankton taxa and environmental factors, and their long-term (1979–2003) trends in two areas of the Baltic Sea, the northern Baltic proper (NBP) and the Gulf of Finland (GF), with statistical analyses. An increasing trend was found in late summer temperature and chlorophyll a of the surface water layer (0–10 m) in both areas. There was also a significant decrease in summer salinity and an increase in winter dissolved inorganic nitrogen to phosphorus (DIN:DIP) ratio in the NBP, as well as increases in winter DIN concentrations and DIN:SiO4 ratio in the GF. Simultaneously, the biomass of chrysophytes and chlorophytes increased in both areas. In the NBP, also the biomass of dinophytes increased and that of euglenophytes decreased, whereas in the GF, cyanobacteria increased and cryptophytes decreased. Redundancy analysis (RDA) indicated that summer temperature and winter DIN concentration were the most important factors with respect to changes in the phytoplankton community structure. Thus, the phytoplankton communities seem to reflect both hydrographic changes and the ongoing eutrophication process in the northern Baltic Sea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号