首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1674篇
  免费   7篇
  国内免费   123篇
测绘学   62篇
大气科学   94篇
地球物理   415篇
地质学   953篇
海洋学   124篇
天文学   36篇
自然地理   120篇
  2024年   15篇
  2023年   38篇
  2022年   46篇
  2021年   67篇
  2020年   161篇
  2019年   87篇
  2018年   119篇
  2017年   177篇
  2016年   111篇
  2015年   132篇
  2014年   229篇
  2013年   354篇
  2012年   214篇
  2010年   4篇
  2007年   2篇
  2006年   4篇
  2005年   11篇
  2004年   11篇
  2003年   6篇
  2002年   16篇
排序方式: 共有1804条查询结果,搜索用时 890 毫秒
91.
As adaptation has come to the forefront in climate change discourse, research, and policy, it is crucial to consider the effects of how we interpret the concept. This paper draws attention to the need for interpretations that foster policies and institutions with the breadth and flexibility to recognize and support a wide range of locally relevant adaptation strategies. Social scientists have argued that, in practice, the standard definition of adaptation tends to prioritize economic over other values and technical over social responses, draw attention away from underlying causes of vulnerability and from the broader context in which adaptive responses take place, and exclude discussions of inequality, justice, and transformation. In this paper, we discuss an alternate understanding of adaptation, which we label “living with climate change,” that emerged from an ethnographic study of how rural residents of the U.S. Southwest understand, respond to, and plan for weather and climate in their daily lives, and we consider how it might inform efforts to develop a more comprehensive definition. The discussion brings into focus several underlying features of this lay conception of adaptation, which are crucial for understanding how adaptation actually unfolds on the ground: an ontology based on nature–society mutuality; an epistemology based on situated knowledge; practice based on performatively adjusting human activities to a dynamic biophysical and social environment; and a placed-based system of values. We suggest that these features help point the way toward a more comprehensive understanding of climate change adaptation, and one more fully informed by the understanding that we are living in the Anthropocene.  相似文献   
92.
We present in situ trace element and Nd isotopic data of apatites from metamorphosed and metasomatized (i.e., altered) and unaltered granitoids in the Songnen and Jiamusi massifs in the eastern Central Asian Orogenic Belt, with the aim of fingerprinting granitoid petrogenesis, including both the magmatic and post-magmatic evolution processes. Apatites from altered granitoids (AG) and unaltered granitoids (UG) are characterized by distinct textures and geochemical compositions. Apatites from AG have irregular rim overgrowths and complex internal textures, along with low contents of rare earth elements (REEs), suggesting the re-precipitation of apatite during epidote crystallization and/or leaching of REEs from apatite by metasomatic fluids. εNd(t) values of the these apatites are decoupled from zircon εHf(t) values for most samples, which can be attributed to the higher mobility of Nd as compared to Sm in certain fluids. Apatites from UG are of igneous origin based on their homogeneous or concentric zoned textures and coupled Nd-Hf isotopic compositions. Trace element variations in igneous apatite are controlled primarily by the geochemical composition of the parental melt, fractional crystallization of other REE-bearing minerals, and changes in partition coefficients. Sr contents and Eu/Eu* values of apatites from UG correlate with whole-rock Sr and SiO2 contents, highlighting the effects of plagioclase fractionation during magma evolution. Apatites from UG can be subdivided into four groups based on REE contents. Group 1 apatites have REE patterns similar to the host granitoids, but are slightly enriched in middle REEs, reflecting the influence of the parental melt composition and REE partitioning. Group 2 apatites exhibit strong light REE depletions, whereas Group 3 apatites are depleted in middle and heavy REEs, indicative of the crystallization of epidote-group minerals and hornblende before and/or during apatite crystallization, respectively. Group 4 apatites are depleted in heavy REEs, but enriched in Sr, which are features of adakites. Some unusual geochemical features of the apatites, including the REE patterns, Sr contents, Eu anomalies, and Nd isotopic compositions, indicate that inherited apatites are likely to retain the geochemical features of their parental magmas, and thus provide a record of small-scale crustal assimilation during magma evolution that is not evident from the whole-rock geochemistry.  相似文献   
93.
In the current research,the impact of the COVID-19 lockdown period on sediment quality of the MericErgene River Basin was evaluated by determining the potentially toxic elements(PTEs) in sediment samples collected from 25 sampling points in the basin.Also some important ecological indicators including potential ecological risk index(PERI),contamination factor(CF),pollution load index(PLI),biological risk index(BRI),and geo-accumulation index(Igeo) and some important statistical indica...  相似文献   
94.
The Gurupi Belt (together with the São Luís cratonic fragment), in north-northeastern Brazil, has been described in previous studies that used extensive field geology, structural analysis, airborne geophysics, zircon U–Pb dating, and whole-rock Sm–Nd isotope and geochemical data as a polyphase orogenic belt, with the Rhyacian being the main period of crust formation. This was related to a 2240 Ma to 2140 Ma accretionary processes that produced juvenile crust, which has subsequently been reworked during a collisional event at 2100 ± 20 Ma, with little evidence of Archean crust. In this study, we use Lu–Hf isotopic data in zircon from granitoids (including gneiss) of variable magmatic series, and amphibolite to improve the knowledge of this scenario, and investigate additional evidence of recycling of Archean basement. Pre-collisional high Ba-Sr and ferroan granitoids and amphibolite formed in island arc (2180–2145 Ma), show only zircons with suprachondritic εHf values (ca. +1 to +8) indicating the large predominance of juvenile magmas. Only 10% of the data show slightly negative εHf values (0 to ?4), which have been observed in granodiorite-gneiss formed in continental arc (2170–2140 Ma), and in strongly peraluminous collisional granites (2125–2070 Ma), indicating the rework of older Paleoproterozoic to Archean components (HfTDM = 2.11–3.69 Ga). A two-component mixing model using both Hf and published Nd isotope data are in line with this interpretation and indicate more than 90% of juvenile material, and less influence of Archean materials. Comparing with other Rhyacian terranes that are interpreted to have been close to Gurupi in a pre-Columbia configuration (ca. 2.0 Ga), our results differ from those of SE-Guiana Shield, which show strong influence of Archean protoliths, and are very similar to those of the central-eastern portion of the Baoulé-Mossi Domain of the West African Craton, which has also been formed largely by juvenile magmas in an accretionary-collisional orogen.  相似文献   
95.
Variations in reference evapotranspiration (ET0) and drought characteristics play a key role in the effect of climate change on water cycle and associated ecohydrological patterns. The accurate estimation of ET0 is still a challenge due to the lack of meteorological data and the heterogeneity of hydrological system. Although there is an increasing trend in extreme drought events with global climate change, the relationship between ET0 and aridity index in karst areas has been poorly studied. In this study, we used the Penman–Monteith method based on a long time series of meteorological data from 1951 to 2015 to calculate ET0 in a typical karst area, Guilin, Southwest China. The temporal variations in climate variables, ET0 and aridity index (AI) were analyzed with the Mann–Kendall trend test and linear regression to determine the climatic characteristics, associated controlling factors of ET0 variations, and further to estimate the relationship between ET0 and AI. We found that the mean, maximum and minimum temperatures had increased significantly during the 65-year study period, while sunshine duration, wind speed and relative humidity exhibited significant decreasing trends. The annual ET0 showed a significant decreasing trend at the rate of ?8.02 mm/10a. However, significant increase in air temperature should have contributed to the enhancement of ET0, indicating an “evaporation paradox”. In comparison, AI showed a slightly declining trend of ?0.0005/a during 1951–2015. The change in sunshine duration was the major factor causing the decrease in ET0, followed by wind speed. AI had a higher correlation with precipitation amount, indicating that the variations of AI was more dependent on precipitation, but not substantially dependent on the ET0. Although AI was not directly related to ET0, ET0 had a major contribution to seasonal AI changes. The seasonal variations of ET0 played a critical role in dryness/wetness changes to regulate water and energy supply, which can lead to seasonal droughts or water shortages in karst areas. Overall, these findings provide an important reference for the management of agricultural production and water resources, and have an important implication for drought in karst regions of China.  相似文献   
96.
Lichenometric dating represents a quick and affordable surface exposure dating method that has been widely used to provide a minimum age constraint on tectonic and geomorphic landscape changes as well as buildings and anthropogenic landscape changes in various settings during the late Holocene. Despite its widespread usage, this method has several limitations. Major problems relate to the sampling of lichen population on any given rock surface and the modeling of growth curves. In order to overcome these issues, it has been suggested to subdivide the rock surface into some areas and measure the largest lichen thallus on each one. However, how to express the data in terms of a probability distribution function and link it to an age of last exposure of the rock surface are still a matter of debate. Here, we propose a novel approach to the modeling of lichen growth curves by treating lichen growth as a continuous-time Markov process with a time-varying rate and additive Brownian noise. Given the growth rates, the probability distribution of the lichen population at any time can then be obtained by solving the Fokker–Planck equation. This method is illustrated using a dataset from the Huashan area of eastern China, which consists of measurements of the largest thalli on 12 rock surfaces of known age. We first build up the probability distribution of the lichen population for each rock surface based on extreme value theory and then use these to optimize the growth curve by minimizing the Jensen–Shannon divergence. A new method is also proposed to use the growth curve to map a sample of size data from an undated rock surface to the calendar age domain so as to yield a fully probabilistic estimate of the exposure age of the undated rock surface rather than a point estimate.  相似文献   
97.
The geochronology of cave deposits in the Cradle of Humankind UNESCO World Heritage Site in South Africa provides a timeframe essential for the interpretation of its fossils. The uranium-lead (U–Pb) and uranium-thorium disequilibrium (U/Th) dating of speleothems, mostly flowstones that underlie and blanket the fossil-bearing sediments, have been effective in this sense, but U–Pb is limited by the requirement of ∼1 ppm U concentrations and low common Pb contents, and U/Th has a c. 500 ka limit of applicability. Here we report age results for calcite-aragonite speleothems obtained using a new combined uranium-thorium-helium ((U,Th)–He) and U/Th dating routine. We reproduced within analytical uncertainty, the published U–Pb or U/Th ages for (a) flowstone in three drill core samples in the range 2000–3000 ka, (b) a flowstone hand sample taken at surface with an age of 1800 ka, and (c) five underground flowstone samples in the range 100–800 ka. Calcite retentivity for He under cave conditions is thus demonstrated. In the few cases where helium loss was observed in speleothems, only some of the subsamples were affected, and to varying degrees, suggesting loss by lattice damage not related to diagenetic processes, rather than volume diffusion. In the 100 to 800 ka range, the combined U/Th disequilibrium and (U,Th)–He method also yielded reliable values for initial (230Th/238U) and (234U/238U) activity ratios. Importantly, most subsamples had high initial (230Th/238U) values, ranging from 1.0 to 19.7, although having low Th/U ratios. This is probably due to incorporation of Fe–Mn oxides-hydroxides dust, on which 230Th was previously adsorbed. Such samples are mostly not dateable by U/Th without the additional input from the He analysis. If not detected and corrected for, such high initial (230Th/238U) values can lead to inaccurate U/Th and U–Pb ages. Our study shows that the incorporation of He analysis in U/Th dating has broad potential application, with four methods for calculating the ages, in carbonates from different environments where U-Pb or U/Th dating would not work.  相似文献   
98.
The Comoros archipelago has attracted renewed attention since 2018 due to the submarine volcano growing east of the island of Mayotte and the associated ongoing seismic crisis. However, the origin of Comorian magmatism remains controversial, as it is either interpreted as related to a hotspot trail, to a fracture zone, or to a plate boundary. Lying in the central part of the archipelago, Anjouan is a key island to better understand the relationship between volcanism and geodynamics. Together with a careful selection of published whole-rock K–Ar ages, our new set of 13 groundmass K–Ar ages on lava flows and one radiocarbon age on a charcoal from a strombolian deposit, allow us to reassess the volcano-tectonic evolution of Anjouan Island. New groundmass K–Ar ages lie within the last 1 Ma, i.e. from 899 ± 14 to 11 ± 1 ka. They suggest that most of the subaerial volcanism in Anjouan is much younger than previously inferred, and occurred as pulses at 900–750 ka, perhaps 530 ka, 230–290 ka, and since 60 ka, with erosional periods in between. Among our new data, one 14C age of 7513–7089 yrs calBCE (9.3 ± 0.2 ka) and five K–Ar ages younger than 60 ka show that recent volcanism occurred in Anjouan. Moreover, the concentration of eruptive vents along a N150° alignment, parallel to the maximum horizontal stress, suggests a strong link between regional tectonics and volcanism. Considering the presence of active volcanoes on both the western and eastern extremities of the Comoros archipelago, our discovery of Holocene activity on Anjouan provides strong arguments against a chronological progression of volcanism along the archipelago, and therefore contradicts the hotspot hypothesis for the origin of volcanism.Finally, this study provides a robust geochronological timeframe of the different volcanic stages of Anjouan. It demonstrates that Anjouan is an active island and suggests that volcanism and tectonics can both resume at any time.  相似文献   
99.
Rockfill is an important construction material for infrastructure engineering, such as dams, railways and airport foundations, which display a long-term post-construction settlement. However, the main mechanisms for rockfill creep and weathering influence still remain poorly understood. Particle mechanics method is used to understand the rockfill creep process under dry and wet conditions. Different bond-aging models and wetting models that represent different degradation and weakening mechanisms are compared, in order to clarify the principle and secondary mechanisms for rockfill creep and weathering influence. The results show that rockfill aggregate breakage in terms of angularity abrasion is the main source for rockfill creep under dry state. Wetting can induce additional strain mainly due to the reduction of contact friction coefficient, i.e. lubrication, and the bond strength reduction just plays a secondary role in producing additional strain. The earlier the wetting occurs during rockfill creep, the more rapidly the rockfill becomes stable. The wetting–drying cycles can induce strain evolution in a ‘stepped’ way, which is in agreement with experimental observation. The practical implications from the modeling and the outstanding issues in this study are also discussed.  相似文献   
100.
The Sergipano belt is the outcome of collision between the Pernambuco-Alagoas Domain (Massif) and the São Francisco Craton during Neoproterozoic assembly of West Gondwana. Although the understanding of the Sergipano belt evolution has improved significantly, the timing of emplacement, geochemistry and tectonic setting of granitic bodies in the belt is poorly known. We recognized two granite age groups: 630–618 Ma granites in the Canindé, Poço Redondo and Macururé domains, and 590–570 Ma granites in the Macururé metasedimentary domain. U–Pb SHRIMP zircon ages for granites of first age group indicated ages of 631 ± 4 Ma for the Sítios Novos granite, 623 ± 7 Ma for the Poço Redondo granite, 619 ± 3.3 Ma for the Lajedinho monzodiorite, and 618 ± 3 Ma for the Queimada Grande granodiorite. These granitoids are dominantly high-K calc-alkaline, magnesian, metaluminous, mafic enclave-rich (Queimada Grande and Lajedinho), or with abundant inherited zircon grains (Poço Redondo and Sitios Novos). Geochemical and isotope data allow us to propose that Sítios Novos and Poço Redondo granites are product of partial melting of Poço Redondo migmatites. Sr-Nd isotopes of the Queimada Grande granodiorite and Lajedinho monzodiorite suggest that their parental magma may have originated by mixing between a juvenile mafic source and a crustal component that could be the Poço Redondo migmatites or the Macururé metasediments. Other 630–618 Ma granites in the belt are the mafic enclave-rich Coronel João Sá granodiorite and the Camará tonalite in the Macururé sedimentary domain. These granites have similar geochemical and isotopic characteristics as the Lajedinho and Queimada Grande granitoids. We infer for the Camará tonalite and Coronel João Sá granodiorite that their parental magmas have had contributions from mafic lower crust and felsic upper crust, most probably from underthrust São Francisco Craton, or Pernambuco-Alagoas Domain. The younger 590–570 Ma granite group is confined to the Macururé metasedimentary domain. Although these granites do not show typical features of S-type granites, their U–Pb age, field relationships, geochemical and Sr-Nd data suggest that their parental magmas have originated from high degree melting of the Macururé micaschists. Field observations support a model in which the Macururé domain, limited by the Belo Monte-Jeremoabo and São Miguel do Aleixo shear zones, behaved as a ductile channel flow for magma migration and emplacement during the Neoproterozoic, very much like the channel flow model proposed for emplacement of leucogranites in the Himalayas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号