首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2039篇
  免费   504篇
  国内免费   686篇
测绘学   84篇
大气科学   739篇
地球物理   249篇
地质学   1581篇
海洋学   154篇
天文学   24篇
综合类   130篇
自然地理   268篇
  2024年   8篇
  2023年   41篇
  2022年   78篇
  2021年   100篇
  2020年   100篇
  2019年   98篇
  2018年   111篇
  2017年   127篇
  2016年   152篇
  2015年   120篇
  2014年   140篇
  2013年   154篇
  2012年   147篇
  2011年   177篇
  2010年   125篇
  2009年   163篇
  2008年   157篇
  2007年   176篇
  2006年   121篇
  2005年   142篇
  2004年   106篇
  2003年   91篇
  2002年   81篇
  2001年   52篇
  2000年   57篇
  1999年   61篇
  1998年   39篇
  1997年   44篇
  1996年   55篇
  1995年   38篇
  1994年   33篇
  1993年   27篇
  1992年   16篇
  1991年   20篇
  1990年   19篇
  1989年   14篇
  1988年   8篇
  1987年   9篇
  1986年   4篇
  1985年   8篇
  1984年   4篇
  1981年   1篇
  1980年   3篇
  1954年   2篇
排序方式: 共有3229条查询结果,搜索用时 406 毫秒
31.
The genesis of Lower Eocene calcite-cemented columns, “pisoid”-covered structures and horizontal interbeds, clustered in dispersed outcrops in the Pobiti Kamani area (Varna, Bulgaria) is related to fossil processes of hydrocarbon migration. Field observations, petrography and stable isotope geochemistry of the cemented structures and associated early-diagenetic veins, revealed that varying seepage rates of a single, warm hydrocarbon-bearing fluid, probably ascending along active faults, controlled the type of structure formed and its geochemical signature. Slow seepage allowed methane to oxidize within the sediment under ambient seafloor conditions (δ18O = − 1 ± 0.5‰ V-PDB), explaining columns' depleted δ13C ratios of − 43‰. Increasing seepage rates caused methane to emanate into the water column (δ13C = − 8‰) and raised precipitation temperatures (δ18O = − 8‰). Calcite-cemented conduits formed and upward migrating fluids also affected interbed cementation. Even higher-energy fluid flow and temperatures likely controlled the formation of “pisoids”, whereby sediment was whirled up and cemented.  相似文献   
32.
The first discovery of dinosaur footprints on the Dalmatian part of the Adriatic-Dinaric carbonate platform (ADCP) is reported. They constitute the geologically youngest record of footprints on the ADCP. The trackbearing layer was formed in the intertidal environment and represents the final stage of a shallowing-upward cycle. Just below it, a heavy dinoturbated limestone layer can be observed. Microfacies analysis, incorporating evidence from benthic foraminifera and algae, indicates a Late Turonian–Early Coniacian age. The overall morphology and size of the footprints points to sauropod dinosaurs; they represent the largest forms recorded so far on the ADCP. This hints at a prolonged sauropod presence on the platform and to its Late Cretaceous connection to the continent rather than isolation.  相似文献   
33.
Marine microbial communities recorded in the Moroccan Anti‐Atlas were unaffected across the Neoproterozoic–Cambrian transition. A stromatolite‐dominated consortium was replaced at the beginning of the Atdabanian (ca 20 Myr after the Neoproterozoic–Cambrian boundary) by shelly metazoan and thromboid consortia, which contain the oldest biostratigraphically significant fossils of the Moroccan Cambrian. The associated collapse of microbial mat (stromatolitic) growth appears to coincide with a change from pre‐Atdabanian shallow‐water restricted conditions into Atdabanian deeper, open‐sea conditions. It is postulated that this environmental change led to an episode of improved water circulation over carbonate platform interiors, promoting shelly metazoan immigration into the region. The Tiout/Amouslek lithostratigraphic contact in the early Atdabanian marks the end of an episodically unstable seafloor as suggested by the abundance of slumping and sliding structures, and synsedimentary microfaults and cracks recorded in the underlying Tiout Member. Concurrent with the transition is the occurrence of a network of cryptic fissures and cavities that provided habitats for a coelobiontic chemosynthetic–heterotrophic microbial community composed of stromatolitic crusts, RenalcisEpiphytonGirvanella intergrowths, and Kundatia thalli. In the overlying Amouslek Formation, archaeocyathan–thromboid reefs were constrained by substrate stability, water depth and subsidence rate. Four reef geometries are distinguished: (i) patch reefs surrounded by shales, (ii) bioherms in which flank beds intercalate laterally with carbonate and shale inter‐reef sediments, (iii) biostromes or low‐relief structures formed as a result of lateral accretion of patch reefs, and (iv) kalyptrate complexes that nucleated because of a marked tendency for aggregation, and in which patch reefs and bioherms occur stacked together bounded by clay–marl–silt seams.  相似文献   
34.
Seismic lamination and anisotropy of the Lower Continental Crust   总被引:2,自引:3,他引:2  
Seismic lamination in the lower crust associated with marked anisotropy has been observed at various locations. Three of these locations were investigated by specially designed experiments in the near vertical and in the wide-angle range, that is the Urach and the Black Forrest area, both belonging to the Moldanubian, a collapsed Variscan terrane in southern Germany, and in the Donbas Basin, a rift inside the East European (Ukrainian) craton. In these three cases, a firm relationship between lower crust seismic lamination and anisotropy is found. There are more cases of lower-crustal lamination and anisotropy, e.g. from the Basin and Range province (western US) and from central Tibet, not revealed by seismic wide-angle measurements, but by teleseismic receiver function studies with a P–S conversion at the Moho. Other cases of lamination and anisotropy are from exhumed lower crustal rocks in Calabria (southern Italy), and Val Sesia and Val Strona (Ivrea area, Northern Italy). We demonstrate that rocks in the lower continental crust, apart from differing in composition, differ from the upper mantle both in terms of seismic lamination (observed in the near-vertical range) and in the type of anisotropy. Compared to upper mantle rocks exhibiting mainly orthorhombic symmetry, the symmetry of the rocks constituting the lower crust is either axial or orthorhombic and basically a result of preferred crystallographic orientation of major minerals (biotite, muscovite, hornblende). We argue that the generation of seismic lamination and anisotropy in the lower crust is a consequence of the same tectonic process, that is, ductile deformation in a warm and low-viscosity lower crust. This process takes place preferably in areas of extension. Heterogeneous rock units are formed that are generally felsic in composition, but that contain intercalations of mafic intrusions. The latter have acted as heat sources and provide the necessary seismic impedance contrasts. The observed seismic anisotropy is attributed to lattice preferred orientation (LPO) of major minerals, in particular of mica and hornblende, but also of olivine. A transversely isotropic symmetry system, such as expected for sub-horizontal layering, is found in only half of the field studies. Azimuthal anisotropy is encountered in the rest of the cases. This indicates differences in the horizontal components of tectonic strain, which finally give rise to differences in the evolution of the rock fabric.  相似文献   
35.
Analysis of monthly mean river temperatures, recorded on an hourly basis in the middle reaches of the Loire since 1976, allows reconstruction by multiple linear regression of the annual, spring and summer water temperatures from equivalent information on air temperatures and river discharge. Since 1881, the average annual and summer temperatures of the Loire have risen by approximately 0.8?°C, this increase accelerating since the late 1980s due to the rise in air temperature and also to lower discharge rates. In addition, the thermal regime in the Orleans to Blois reach is considerably affected by the inflow of groundwater from the Calcaires de Beauce aquifer, as shown by the summer energy balance. To cite this article: F. Moatar, J. Gailhard, C. R. Geoscience 338 (2006).  相似文献   
36.
Ion-microprobe U–Pb zircon dating of lower-crust metasedimentary granulite are reported on samples from two localities in Europe in order to determine (a) how this environment recorded the Variscan and eo-Alpine events, and (b) whether the transition between the two orogenic cycles was continuous or separated by a gap. The samples come from enclaves hosted by Miocene volcanoes at Bournac in the French Massif Central, and from the granulitic metasedimentary basement of the Alpine Santa Lucia nappe in Corsica, on the South European paleomargin of the Ligurian branch of the Tethys Sea. The zircon ages from Bournac range between 630 and 430 Ma and between 380 and 150 Ma with a major frequency peak at 285 Ma; the zircons older than 430 Ma are interpreted as detrital, whereas those younger than 380 Ma are considered to have formed by metamorphic processes after burial in the lower crust. Zircon ages from Santa Lucia range from to 356 to 157 Ma, with exception of one inherited Archean grain, and are interpreted like the younger Bournac zircons as having been formed by metamorphic processes.

In a granulite metamorphic environment, as opposed to an anatectic environment, new zircon growth can occur in the solid state. Once Zr has been incorporated into zircon, however, it is difficult to remobilize without dissolution; thus Zr available for new zircon growth must result from the breakdown of Zr-bearing minerals during prograde and/or retrograde events. In this light, the U–Pb zircon-age probability curves are interpreted as markers for major tectonometamorphic events, as suggested by the close correspondence between peaks in the curve and geological events recorded in the upper-crust, such as magma emplacement and basin subsidence.

Evidence of a tectonometamorphic gap between the Variscan and Alpine orogeneses is provided by the Santa Lucia zircon-age probability curve, which reveals a probable interlude during the Variscan–Alpine transition between 240 and 210 Ma. Here, the peak at 240 Ma is interpreted as the very beginning of crustal extension and the low at 210 Ma as a period of quiescence prior to the formation of an active margin and oceanization.  相似文献   

37.
Both adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province, eastern China are associated with Cretaceous Cu–Au mineralization. The Shaxi quartz diorite porphyrites exhibit adakite-like geochemical features, such as light rare earth element (LREE) enrichment, heavy REE (HREE) depletion, high Al2O3, MgO, Sr, Sr / Y and La / Yb values, and low Y and Yb contents. They have low εNd(t) values (− 3.46 to − 6.28) and high (87Sr / 86Sr)i ratios (0.7051–0.7057). Sensitive High-Resolution Ion Microprobe (SHRIMP) zircon analyses indicate a crystallization age of 136 ± 3 Ma for the adakitic rocks. Most volcanic rocks and the majority of monzonites and syenites in the Luzong area are K-rich (or shoshonitic) and were also produced during the Cretaceous (140–125 Ma). They are enriched in LREE and large-ion lithophile elements, and depleted in Ti, and Nb and Ba and exhibit relatively lower εNd(t) values ranging from − 4.65 to − 7.03 and relatively higher (87Sr / 86Sr)i ratios varying between 0.7057 and 0.7062. The shoshonitic and adakitic rocks in the Luzong area have similar Pb isotopic compositions (206Pb / 204Pb = 17.90–18.83, 207Pb / 204Pb = 15.45–15.62 and 208Pb / 204Pb = 38.07–38.80). Geological data from the Luzong area suggest that the Cretaceous igneous rocks are distributed along NE fault zones (e.g., Tanlu and Yangtze River fault zones) in eastern China and were likely formed in an extensional setting within the Yangtze Block. The Shaxi adakitic rocks were probably derived by the partial melting of delaminated lower crust at pressures equivalent to crustal thickness of > 50 km (i.e., 1.5 GPa), possibly leaving rutile-bearing eclogitic residue. The shoshonitic magmas, in contrast, originated mainly from an enriched mantle metasomatized by subducted oceanic sediments. They underwent early high-pressure (> 1.5 GPa) fractional crystallization at the boundary between thickened (> 50 km) lower crust and lithospheric mantle and late low-pressure (< 1.5 GPa) fractional crystallization in the shallow (< 50 km) crust. The adakitic and shoshonitic rocks appear to be linked to an intra-continental extensional setting where partial melting of enriched mantle and delaminated lower crust was probably controlled by lithospheric thinning and upwelling of hot asthenosphere along NE fault zones (e.g., Tanlu and Yangtze River fault zones) in eastern China. Both the shoshonitic and adakitic magmas were fertile with respect to Cu–Au mineralization.  相似文献   
38.
Paleontological study of Upper Jurassic and Lower Cretaceous sediments recovered by boreholes in the Agan-Vakh and Nadym-Vengapur interfluves clarified environments of their deposition. As is shown, influx of siliciclastic material to central areas of the West Siberian sea basin varied through time. Taxonomic composition and ecological structure of nektonic and benthic fossil assemblages are analyzed and considered in terms of environmental factors such as hydrodynamics, aeration, temperature, and salinity of seawater.  相似文献   
39.
The equation of state of MgGeO3 perovskite was determined between 25 and 66 GPa using synchrotron X-ray diffraction with the laser-heated diamond anvil cell. The data were fit to a third-order Birch–Murnaghan equation of state and yielded a zero-pressure volume (V 0) of 182.2 ± 0.3 Å3 and bulk modulus (K 0) of 229 ± 3 GPa, with the pressure derivative (K= (?K 0/?P) T ) fixed at 3.7. Differential stresses were evaluated using lattice strain theory and found to be typically less than about 1.5 GPa. Theoretical calculations were also carried out using density functional theory from 0 to 205 GPa. The equation of state parameters from theory (V 0 = 180.2 Å3, K 0 = 221.3 GPa, and K0 = 3.90) are in agreement with experiment, although theoretically calculated volumes are systematically lower than experiment. The properties of the perovskite phase were compared to MgGeO3 post-perovskite phase near the observed phase transition pressure (~65 GPa). Across the transition, the density increased by 2.0(0.7)%. This is in excellent agreement with the theoretically determined density change of 1.9%; however both values are larger than those for the (Mg,Fe)SiO3 phase transition. The bulk sound velocity change across the transition is small and is likely to be negative [?0.5(1.6)% from experiment and ?1.2% from theory]. These results are similar to previous findings for the (Mg,Fe)SiO3 system. A linearized Birch–Murnaghan equation of state fit to each axis yielded zero-pressure compressibilities of 0.0022, 0.0009, and 0.0016 GPa?1 for the a, b, and c axis, respectively. Magnesium germanate appears to be a good analog system for studying the properties of the perovskite and post-perovskite phases in silicates.  相似文献   
40.
Four successive assemblages of Berriasian brachiopods distinguished for the first time in the Crimea are correlated with concurrent subdivisions of the ammonoid scale. Berriasian brachiopods are represented by 44 species of 27 genera and 14 families, which are most complete in terms of taxonomic composition as compared to other concurrent brachiopod faunas known elsewhere. The assemblages are dominated by local species. As is proved, the Berriasian brachiopods studied are appropriate for age determination, subdivision and correlation of their host deposits. Their geographic distribution that has been analyzed elucidates connections of the Berriasian sea basins within the Mediterranean paleozoogeographic region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号