首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   20篇
  国内免费   21篇
大气科学   26篇
地球物理   23篇
地质学   18篇
海洋学   85篇
综合类   4篇
自然地理   4篇
  2023年   1篇
  2022年   3篇
  2021年   9篇
  2020年   3篇
  2019年   15篇
  2018年   7篇
  2017年   18篇
  2016年   20篇
  2015年   5篇
  2014年   10篇
  2013年   6篇
  2012年   8篇
  2011年   13篇
  2010年   8篇
  2009年   5篇
  2008年   4篇
  2007年   11篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2001年   3篇
排序方式: 共有160条查询结果,搜索用时 24 毫秒
51.
The behaviour of offshore‐directed winds over coastal dune and beach morphology was examined using a combination of modelling (3‐D computational fluid dynamics (CFD)) and field measurement. Both model simulations and field measurements showed reversal of offshore flows at the back beach and creation of an onshore sediment transport potential. The influence of flow reversals on the beach‐dune transport system and foredune growth patterns has previously received little attention. Detailed wind flow measurements were made using an extensive array of mast‐mounted, 3‐D ultrasonic anemometers (50 Hz), arranged parallel to the dominant incident wind direction. Large eddy simulation (LES) of the offshore wind flow over the dune was conducted using the open‐source CFD tool openFOAM. The computational domain included a terrain model obtained by airborne LiDAR and detailed ground DGPS measurements. The computational grid (~22 million cells) included localized mesh refinement near the complex foredune terrain to capture finer details of the dune morphology that might affect wind flows on the adjacent beach. Measured and simulated wind flow are presented and discussed. The CFD simulations offer new insights into the flow mechanics associated with offshore winds and how the terrain steering of wind flow impacts on the geomorphological behaviour of the dune system. Simulation of 3‐D wind flows over complex terrain such as dune systems, presents a valuable new tool for geomorphological research, as it enables new insights into the relationship between the wind field and the underlying topography. The results show that offshore and obliquely offshore winds result in flow reversal and onshore directed winds at distances of up to 20 m from the embryo dune toe. The potential geomorphological significance of the findings are discussed and simple calculations show that incoming offshore and obliquely offshore winds with mean velocities over 13 m s?1 and 7 m s?1, respectively, have the potential to create onshore‐directed winds at the back beach with mean velocities above 3.3 m s?1. These are above the threshold of movement for dry sand and support previous conclusions about the significance of offshore winds in dune and beach budget calculations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
52.
A numerical study was undertaken in order to assess the capability of an unsteady RANS code to predict the seakeeping characteristics of a high-speed multi-hull vessel in high sea states. Numerical analysis includes evaluation of ship motions, effects of wave steepness on ship response, catamaran natural frequency and added resistance in waves. Computations were performed for the DELFT 372 catamaran by the URANS solver CFDSHIP-Iowa V.4. The code was validated with encouraging results for high ship speeds (0.3≤Fn≤0.75) and high wave amplitudes (0.025≤Ak≤0.1). Comparison with strip theory solutions shows that the RANS method predicts ship motions with higher accuracy and allows the detection of nonlinear effects. Current computations evidence that heave peaks occur at resonance for all Fn, and reach the absolute maximum at Fn=0.75. Maximum pitch occurs at frequencies lower than resonance, for each speed, and absolute maximum occurs at medium Fn=0.6. Maximum added resistance, Raw, was computed at Fn=0.45, which, interestingly, is near the catamaran Fncoincidence. Overall, we found similar results as Simonsen et al. (2008) for KCS containership, though, herein, a multi-hull geometry and higher speeds were tested. Also, our results are useful to further evaluate the exciting forces and their correlation with fe and λ/Lpp.  相似文献   
53.
俞嘉臻  张显涛  李欣 《海洋工程》2022,40(5):98-110
由于沿海区域的限制以及愈加严重的环境污染,渔业养殖正从近海走向深远海。深远海海域的海况更加恶劣,给养殖装备的设计与性能评估带来新的挑战。为解决该问题,对极端波浪与养殖装备网衣结构的相互作用开展研究。基于waves2Foam建立数值波浪水池,极端波浪模拟采用基于NewWave理论的聚焦波模型,网衣结构模拟采用多孔介质模型,并通过与Morison模型计算的网衣受力等效分析,获得多孔介质模拟网衣结构阻力系数的直接估计方法。然后将多孔介质模型嵌入waves2Foam中,开展聚焦波与网衣结构相互作用的数值模拟,同时开展水槽试验,验证数值模拟的准确性。基于数值模拟结果,系统地分析了不同网衣密实度及不同波浪参数下网衣结构的升阻力特性以及网衣结构对波浪场的扰动规律。研究表明:聚焦波波峰幅值和网衣密实度对网衣结构的升阻力影响较大,且升力峰值出现在阻力为0的时刻;网衣结构对聚焦波的时空演化特性有影响,改变了聚焦波波形。  相似文献   
54.
基于流体动力学的探空仪GTS1湿度测量误差修正研究   总被引:2,自引:0,他引:2       下载免费PDF全文
准确的湿度垂直廓线对短期数值天气预报和中长期气候研究分析均具有重要参考价值,但太阳辐射与高空云雨等因素导致探空湿度测量精度较低.针对探空仪GTS1白天进行湿度测量时存在明显偏干误差的现象,本文建立了GTS1湿度测量结构模型,采用计算流体动力学方法重点研究了太阳辐射对GTS1湿度测量的影响,同时探讨了其防雨/防辐射罩的防雨效果.结合改进的太阳辐射计算模型,利用Fluent模拟分析了防雨/防辐射罩云雨滴轨迹和内部温度场分布,数值仿真结果表明:在垂直气流下防雨/防辐射罩基本保护湿度传感器免受高空云雨的影响,对太阳辐射也起到一定防护作用.但太阳辐射对GTS1湿度测量的偏干影响仍较显著,海拔30km左右相对误差甚至高达70%.通过与RS92及GTS1探空湿度测量中的太阳辐射偏干误差相对比,发现基于流体动力学数值计算的湿度相对误差随海拔高度的变化趋势与之基本吻合.本文也给出了理论计算与实验测量存在一定差异的原因,进而以南京探空站2014年不同季节的温度、气压、气球的上升速度等探空数据为计算参数,获取了太阳辐射误差与海拔及环境温度的关系,并对四组探空湿度廓线进行太阳辐射误差修正,提升了GTS1探空仪高空湿度测量的精度.本文研究结果为探空湿度测量太阳辐射偏干误差的有效修正提供了一定的参考.  相似文献   
55.
A dominant mechanism for residual trapping of a nonwetting fluid in porous media during imbibition is snap-off or the disconnection of a continuous stream of the nonwetting fluid when it passes through pore constrictions and when a criterion based on capillary pressure imbalance is met. While quasi-static criteria for Roof snap-off have been defined for pores based on the imbalance between capillary pressure across the front/tail meniscus and local capillary pressure at the pore throat, and expressed in terms of pore body to pore throat ratio for simplification, we extended the previous quasi-static snap-off criterion by considering the local capillary pressure imbalance between the pore body and the pore throat for both circular and noncircular pores when the wetting film exists. We then used the criterion to analyze results from computational fluid dynamics (CFD) simulations of multi-phase flow with supercritical CO2 as the nonwetting fluid and water as the wetting fluid. The extended criterion successfully described most situations we modeled. Furthermore, we compared fluid interface shape for a noncircular 3D pore predicted by the minimum surface energy (MSE) theory against 3D CFD simulations. While the fluid interface shape at the pore throat for 3D simulation was consistent with the shape predicted by MSE theory, the shape could not be successfully predicted by the MSE theory at the upstream and downstream pore body. Moreover, film flow existed for the noncircular pore at the downstream pore body.  相似文献   
56.
The impact of ground heating on flow fields in street canyons under different ambient wind speed conditions was studied based on numerical methods.A series of numerical tests were performed,and three factors including height-to-width(H/W) ratio,ambient wind speed and ground heating intensity were taken into account.Three types of street canyon with H/W ratios of 0.5,1.0 and 2.0,respectively,were used in the simulation and seven speed values ranging from 0.0 to 3.0 m s 1 were set for the ambient wind speed.The ground heating intensity,which was defined as the difference between the ground temperature and air temperature,ranged from 10 to 40 K with an increase of 10 K in the tests.The results showed that under calm conditions,ground heating could induce circulation with a wind speed of around 1.0 m s 1,which is enough to disperse pollutants in a street canyon.It was also found that an ambient wind speed threshold may exist for street canyons with a fixed H/W ratio.When ambient wind speed was lower than the threshold identified in this study,the impact of the thermal effect on the flow field was obvious,and there existed a multi-vortex flow pattern in the street canyon.When the ambient wind speed was higher than the threshold,the circulation pattern was basically determined by dynamic effects.The tests on the impact of heating intensity showed that a higher ground heating intensity could strengthen the vortical flow within the street canyon,which would help improve pollutant diffusion capability in street canyons.  相似文献   
57.
This work addresses the experimental and numerical study of a stepped planing hull and the related fluid dynamics phenomena typically occurring in the stepped hull in the unwetted aft body area behind the step. In the last few years, the interest in high-speed planing crafts, with low weight-to-power ratios, has been increasing significantly, and, in such context, naval architects have been orienting toward the stepped hull solution. Stepped planing hulls ensure good dynamic stability and seakeeping qualities at high speeds. This is mainly due to the reduction of the wetted area, which is caused by the flow separation occurring at the step. This paper presents the experimental results of towing tank tests in calm water on a single-step hull model, which is the first model of a new systematic series. The same flow conditions are analyzed via Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulations (LES), with different moving mesh techniques (overset/chimera and morphing grid), performed at different model speeds. The numerical results are in accordance with experimental data, and overset/chimera grid is found to be the best approach between the analyzed ones. The flow patterns obtained numerically through LES on a refined grid appear similar to the ones observed in towing tank investigations through photographic acquisitions. These flow patterns are dominated by a rather complex 3D arrangement of vortices originating from air spillage at both sides of the step. The understanding of these phenomena is important for the effectiveness of stepped hull designs.  相似文献   
58.
In this paper, we present the analysis of an underwater horizontal oil jet experimental measurement and Computational Fluid Dynamics (CFD) using the Reynolds Averaged Navier Stokes (RANS) equations. Two oil subsurface releases were conducted: one with crude oil and another with crude oil premixed with dispersant at the dispersant to oil ratio (DOR) of 1:20. The jet profile was captured by a camera at moderate resolution, and the instantaneous velocity was measured by a Vectrino Profiler. The velocity components, turbulence kinetic energy, and turbulence dissipation rate from the experiment agreed well with those from the CFD simulation using the k-epsilon turbulence model. The spread angle of the jet was found to be around 21° and 24° from the experiment measurement, for oil without dispersant and oil with dispersant, respectively. The latter is close to the angle of miscible jets at 23°. The jet profile of oil with dispersant had a smaller buoyancy than that without dispersant, which is probably due to the large water entrainment for the oil with dispersant jet. The cross sections of the jet for both cases gradually became flattened with distance, as the plume turned upward.  相似文献   
59.
刘君  张雪琪 《海洋工程》2017,35(3):29-36
板翼动力锚是依靠自重完成安装并靠自重和海床土的抗力来锚固的新型动力锚。板翼动力锚在水中自由下落的阻力决定了锚到达海床表面时的速度,进而直接决定了锚贯入海床中的深度以及它能提供的承载力。板翼动力锚的形状比较复杂,采用计算流体动力学的方法研究板翼动力锚的下落速度、水平位移和转角与下落位移的关系。计算结果表明:板翼动力锚的拖曳阻力系数约为0.93~1.12之间;在沉贯过程中应使加载臂与翼板共面以减少阻力;板翼动力锚的终端速度约为28 m/s。  相似文献   
60.
The scour behavior of cushioned caisson constructed on reinforced ground, which is used to support superstructure constructed in deep water in seismic zones, was investigated by experimental and numerical methods. Flume tests under nine different flow velocities between 18 and 48?cm/s were performed based on hydraulic similarity design. Complementary numerical simulations were also conducted for the flow velocities ranging from 16 to 46?cm/s. Five typical working modes of the foundation under erosion, namely, ideal working, well working, edge failure, shear failure, and total failure, are analyzed together with their potential impacts on seismic-designed foundation. The critical shear stress, local flow structures, and streamlines were used as the key factors to analyze the change of bed materials and the scour characteristics. Fluid–solid interaction model was built by computational fluid dynamics with sediment transport model, and k–ε turbulent model has been implemented to describe the turbulence in the fluid phase typical of scour process. The mechanisms of two possible failure models for the foundation layer elements were identified, based on which recommendations were provided for scour protection to ensure the integrity and performance of seismic-designed foundations. The integrated computational model and model experiments also demonstrate a framework to understand the local scour mechanism for the cushioned caisson on reinforced ground.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号