首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   40篇
  国内免费   77篇
测绘学   15篇
大气科学   151篇
地球物理   26篇
地质学   123篇
海洋学   18篇
天文学   1篇
综合类   36篇
自然地理   38篇
  2024年   1篇
  2023年   6篇
  2022年   10篇
  2021年   5篇
  2020年   8篇
  2019年   10篇
  2018年   9篇
  2017年   4篇
  2016年   8篇
  2015年   8篇
  2014年   13篇
  2013年   20篇
  2012年   19篇
  2011年   21篇
  2010年   22篇
  2009年   21篇
  2008年   36篇
  2007年   24篇
  2006年   29篇
  2005年   24篇
  2004年   11篇
  2003年   18篇
  2002年   15篇
  2001年   22篇
  2000年   7篇
  1999年   4篇
  1998年   4篇
  1997年   1篇
  1996年   5篇
  1995年   5篇
  1994年   1篇
  1993年   3篇
  1991年   2篇
  1990年   6篇
  1989年   2篇
  1984年   1篇
  1982年   1篇
  1937年   1篇
  1935年   1篇
排序方式: 共有408条查询结果,搜索用时 265 毫秒
31.
地下水补给温度与降雨量是重要的水文地质参数,已有的测定方法大多只能给出其相对变化。本文介绍的惰性气体法能同时求得地下水补给温度与降雨量的值,其基本原理是:利用地下水中惰性气体的平衡溶解量计算出地下水补给温度;在得到地下水补给温度的基础上,利用地下水中惰性气体的“过剩空气”量计算出降雨量。该方法主要适用于封闭条件下的深层地下水。  相似文献   
32.
The variability of the summer rainfall over China is analyzed using the EOF procedure with a new parameter (namely, mode station variance percentage) based on 1951-2000 summer rainfall data from 160 stations in China. Compared with mode variance friction, the mode station variance percentage not only reveals more localized characteristics of the variability of the summer rainfall, but also helps to distinguish the regions with a high degree of dominant EOF modes representing the analyzed observational variable. The atmospheric circulation diagnostic studies with the NCEP/NCAR reanalysis daily data from 1966 to 2000 show that in summer, abundant (scarce) rainfall in the belt-area from the upper-middle reaches of the Yangtze River northeastward to the Huaihe River basin is linked to strong (weak) heat sources over the eastern Tibetan Plateau, while the abundant (scarce) rainfall in the area to the south of the middle-lower reaches of the Yangtze River is closely linked to the weak (strong) heat sources over the tropical western Pacific.  相似文献   
33.
This article studies the response of the distribution pattern and the physiological characteristics of the ecosystem to the spontaneous precipitation and the interaction between vegetation and the atmosphere on multiple scales in arid and semi-arid zones, based on measured data of the ecological physiological parameters in the Ordas Plateau of northern China. The results show that the vegetation biomass and the energy use efficiency of photosynthesis are especially sensitive to the annual precipitation; strong and complex interactions exist between the vegetation and the atmosphere on multiple scales leading to supernormal thermal heterogeneity of the underlying surface, the strong vortex movement and turbulence. This study can facilitate understanding of the land surface processes and the influences of global climate change as well as human activities on the human environment in the arid and semi-arid zones. It also aids in improving the parameterization schemes of turbulent fluxes of a heterogeneous underlying surface for land surface processes in climate models.  相似文献   
34.
Using a 40-yr daily precipitation dataset including 134 stations from 1962 to 2001, the large-scale distribution patterns of precipitation anomalies over East China are investigated in the present paper. In the phase space spanned by the first 8 EOFs generated from the 20-day low-pass filtered data, the six rainfall regimes (RRs) are identified by applying a cluster analysis method, namely, the northeastern China regime, Yellow River regime, Qinling Mountain-Huaihe River regime, Yangtze River with its south regime, South China regime, and rainless regime. Analyses show that the new RRs exhibit good persistence and evident physical sense, and excellently represent both of countrywide and regional features, which also demonstrate the inhomogeneity of multi-dimensional phase space. Furthermore, it is more important that the new RRs can describe intraseasonal dynamic characteristics of large-scale rainfall anomalies, which is the most significant difference between the new RRs and the conventional seasonal mean rainfall patterns. On the other hand, the climatic characteristics of daily distributions of the RRs events, as well as the 40-year panorama of the RRs occurring are also investigated, which further document rationality and objectivity of the RRs with intraseasonal variability, and are likely to present more helpful information for short-term climate prediction, compared with other previous classical rainfall patterns.  相似文献   
35.
As the project of National Key Basic Research Development Program: Research on Formation Mechanisms and Predictive Theories of Major Weather Disasters in China has been fulfilled by 5-yr efforts of Chinese scientists, achieving results of great significance are as follows: 1) development of multi-scale physical models for Meiyu frontal heavy rainfall based on a range of real-time observations; 2) construction of synoptic models for such heavy rainfall; 3) the Meiyu front found to consist of multi-scale systems that represent a subtropical front, which shears structural features of an extratropical front and ITCZ, displaying sometimes a bi-front feature in the mid-lower Yangtze Basin (MLYB). The positive feedback between pre-frontal wet physical processes and over-front strong convective activities as well as interactions among multi-scale systems of the Meiyu front act as the important mechanism for the maintenance and development of the Meiyu front; 4) proposal of theories and methods for quantitative retrieval of multiple mesoscale torrential rains from satellite remote sensings, leading to a line of products; 5) investigation of applicable theories and techniques for retrieving the heavy rainfall system's 3D structure from dual-Doppler synchronous detectings; and 6) development of a system for meso heavy rainfall numerical prediction models with a 3D variational data assimilation scheme included, a tool that played an active role in flood combating and relief activities over the Huaihe River Basin (HRB) in 2003.  相似文献   
36.
1 INTRODUCTION Soil erosion in the foothills of the Hindu Kush-Himalayas (HKH) is considered to be a hot topic in land degradation research in the region (Scherr and Yadav, 1996). The land degradation research has mainly addressed the issue of topsoil los…  相似文献   
37.
In this paper, the numerical simulation bias of the non-hydrostatic version GRAPES-Meso (Mesoscale of the Global and Regional Assimilation and Prediction System) at the resolution of 0.18o for a torrential rain case, which happened in May 31st to June 1st 2005 over Hunan province, are diagnosed and investigated by using the radiosondes, intensive surface observation, and the operational global analysis data, and the sensitivity experimental results as well. It is shown in the result that the GRAPES-Meso could reproduce quite well the main features of large-cale circulation and the distribution of the accumulated 24h precipitation and the key locations of the torrential rainfall are captured reasonably well by the model. However, bias exist in the simulation of the mesoscale features of the torrential rain and details of the relevant systems, for example, the simulated rainfall that is too earlier in model integration and remarkable underprediction of the peak value of rainfall rates over the heaviest rainfall region, the weakness of the upper jet simulation and the overprediction of the south-west wind in the lower troposphere etc. The investigation reveals that the sources of the simulation bias are different. The erroneous model rainfall in the earlier integration stage over the heaviest rainfall region is induced by the model initial condition bias of the wind field at about 925hPa over the torrential rainfall region, where the bias grow rapidly and spread upward to about 600hPa level within the few hours into the integration and result in abnormal convergence of the wind and moisture, and thus the unreal rainfall over that region. The large bias on the simulated rainfall intensity over the heaviest rainfall region might be imputed to the following combined factors of (1) the simulation bias on the strength and detailed structures of the upper-level jet core which bring about significant underpredictions of the dynamic conditions (including upper-level divergence and the upward motion) for heavy rainfall due to unfavorable mesoscale vertical coupling between the strong upper-level divergence and lower-level convergence; and (2) the inefficient coupling of the cumulous parameterization scheme and the explicit moisture in the integration, which causes the failure of the explicit moisture scheme in generating grid-scale rainfall in a certain extent through inadequate convective adjustment and feedback to the grid-scale. In addition, the interaction of the combined two factors could form a negative feedback to the rainfall intensity simulation, and eventually lead to the obvious underprediction of the rainfall rate.  相似文献   
38.
Study was carried out on two landfall typhoons Haitang and Matsa, which affected Zhejiang province seriously in 2005. Firstly, the similarity and difference between the two typhoon-induced heavy rains were compared and it was pointed out that both of them brought strong large-scale precipitation and the maximum centers of rainfall were located on the north side of the landfall site. Making landfall on Fujian, Haitang was weaker than Matsa in intensity but surpassed it in rainfall. Then with focus on intensity, moving speed, structure of typhoon, circulation and terrain, the two typhoon-related heavy rains were compared and analyzed. Results show that the asymmetrical distribution of rainfall was closely related to the structure of typhoons themselves, moisture transportation and mesoscale terrain. In contrast to the south side, the north side was hotter and wetter and water vapor was also more abundant. The phenomenon of more rainfall induced by Haitang was in connection with the following reasons. Invading cold air led to rainfall increases, weakened dynamic field and slower movement both benefited precipitation. For the last part, the cold characteristic of air mass over Zhejiang was also a favorable factor for the rain.  相似文献   
39.
The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulated through rainfall assimilation using the PSU/NCAR non-hydrostatic, mesoscale, numerical model (MM5) and its four-dimensional, variational, data assimilation (4DVAR) system. For this case, the improvement of the process via the 4DVAR rainfall assimilation into the simulation of mesoscale precipitation systems is investigated. With the rainfall assimilation, the convection is triggered at the right location and time, and the evolution and spatial distribution of the mesoscale convective systems (MCSs) are also more correctly simulated. Through the interactions between MCSs and the weather systems at different scales, including the low-level jet and mei-yu front, the simulation of the entire mei-yu weather system is significantly improved, both during the data assimilation window and the subsequent 12-h period. The results suggest that the rainfall assimilation first provides positive impact at the convective scale and the influences are then propagated upscale to the meso- and sub-synoptic scales.
Through a set of sensitive experiments designed to evaluate the impact of different initial variables on the simulation of mei-yu heavy rainfall, it was found that the moisture field and meridional wind had the strongest effect during the convection initialization stage, however, after the convection was fully triggered, all of the variables at the initial condition seemed to have comparable importance.  相似文献   
40.
基于“前兆台网(站)观测数据跟踪分析平台”,对武汉台形变观测资料进行了系统分析,提取出观测曲线受降雨干扰影响的事件,采用降雨总量、初始驱动降雨量和瞬时降雨量最大值等降雨参数对降雨干扰事件进行统计分析。结果表明:降雨总量达40 mm、初始驱动降雨量为0.3 mm或瞬时降雨量最大值达0.6 mm时,DSQ型水管倾斜仪易受降雨干扰;SSY型铟瓦棒伸缩仪当降雨总量超60 mm或瞬时降雨量最大值大于0.5 mm时易受降雨干扰;VS型垂直摆倾斜仪受降雨干扰与降雨总量、初始驱动降雨量和瞬时降雨量最大值无显著相关关系;降雨总量对形变仪器观测物理量的影响基本呈现线性;而形变仪器观测物理量与初始驱动降雨量、瞬时降雨量最大值无显著相关关系。认为武汉台形变观测受降雨影响主要来自降雨渗透影响和周边水体荷载变化影响两个方面。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号