首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   581篇
  免费   206篇
  国内免费   442篇
测绘学   1篇
大气科学   1027篇
地球物理   27篇
地质学   9篇
海洋学   122篇
天文学   2篇
综合类   16篇
自然地理   25篇
  2024年   7篇
  2023年   32篇
  2022年   16篇
  2021年   35篇
  2020年   45篇
  2019年   37篇
  2018年   29篇
  2017年   32篇
  2016年   26篇
  2015年   33篇
  2014年   60篇
  2013年   57篇
  2012年   45篇
  2011年   46篇
  2010年   61篇
  2009年   66篇
  2008年   61篇
  2007年   75篇
  2006年   58篇
  2005年   66篇
  2004年   48篇
  2003年   39篇
  2002年   29篇
  2001年   42篇
  2000年   30篇
  1999年   22篇
  1998年   29篇
  1997年   21篇
  1996年   15篇
  1995年   8篇
  1994年   17篇
  1993年   11篇
  1992年   7篇
  1991年   6篇
  1990年   11篇
  1989年   6篇
  1986年   1篇
排序方式: 共有1229条查询结果,搜索用时 26 毫秒
71.
唐玉  李栋梁 《气象科学》2020,40(2):169-179
根据中国气象局《梅雨监测业务规定》中的入、出梅标准,结合1960—2016年全国661个常规气象站逐日气象资料,以及NCEP/NCAR月平均再分析资料,分析了江淮梅雨和东亚副热带夏季风进程变异的时空特征,提取季风关键区(32°~34°N,112°~120°E,包含17个站点),并分析了江淮梅雨和季风关键区的联系与成因。结果表明:1960—2016年平均梅雨期为6月8日—7月15日,平均梅雨量为303 mm。比东亚平均梅雨季的开始时间早9 d,比其结束时间晚7 d。梅雨量在近57 a中也呈波动式变化,但整体为上升趋势。入梅越早,出梅越晚,则梅雨期越长,梅雨量越多。副热带夏季风推进到关键区的平均时间为5月19日,其在1970s末和1990s末分别发生了由偏晚向偏早和由偏早向偏晚的突变。夏季风到达关键区偏早时,出梅日偏晚,梅雨量偏多,季风到达偏晚时,出梅日偏早,梅雨量偏少。副热带夏季风推进时间和江淮梅雨量呈全区一致的负相关,负相关区位于湖南、湖北及江西三省临近的两湖地区。东亚副热带夏季风到达关键区时间偏早(晚)年,500 hPa高度场上乌拉尔山—鄂霍茨克海为正(负)距平,阻塞高压增强(减弱);日本海附近为负(正)距平,东亚大槽加深(西退北缩),加强(削弱)了槽后冷空气向南输送且不(有)利于中低纬度副热带高压的北跳,西太平洋副热带高压中心强度增强(减弱),位置偏西(东),其西北侧的西南暖湿气流输送加强(减弱),江淮地区有水汽的辐合(辐散),有(不)利于梅雨量偏多。  相似文献   
72.
陈兵  蒋元春  李栋梁  唐玉 《气象科学》2020,40(5):669-678
利用1960—2020年江淮地区75个气象站逐日降水量、气温、相对湿度资料以及NCEP/NCAR再分析资料和Hadley中心海表温度资料,研究了东亚副热带夏季风进程变异对江淮梅雨的影响,揭示了不同类型梅雨期太平洋海温及大气环流异常特征。结果表明:8种江淮梅雨类型中,多雨型占45.9%,少雨型占54.1%,其中多雨型在前30 a占36.7%,后31 a占63.3%。江淮典型梅雨年(高温高湿多雨)的主要特征为安徽南部、江苏中部及湖北东部地区降水偏多,安徽南部、江西东北部及浙江西北部气温偏高,淮河流域湿度大;而在非典型梅雨年(低温低湿少雨)大部分地区雨量偏少,气温呈"东高西低"分布,低温中心区位于淮河中游,湿度呈"西大东小"分布。欧亚大陆中高纬度阻塞高压增强,脊前向南输送的西北气流加强且路径偏东,中国东北冷涡强度较强且位置偏西南,东亚大槽加深,槽后冷空气向南输送,有利于典型梅雨形成。当前期冬春季赤道东太平洋海温异常偏高,西太平洋海温异常偏低时,西太平洋副热带高压强度偏强、面积偏大、脊线位置偏南、西伸脊点偏西,东亚副热带夏季风推进到江淮地区的时间偏早,出梅偏晚,梅雨期降水量偏多。  相似文献   
73.
一次滇西南秋季暴雨的中尺度分析与诊断   总被引:27,自引:20,他引:7  
应用大尺度物理量场诊断分析和中尺度带通滤波处理技术,对2001年10月25日发生在云南西南部的一次暴雨过程机制进行了分析。结果表明,在副热带高压(下称副高)外围大尺度西南气流环境场中,中尺度系统是此次暴雨产生的直接原因;大尺度环境场为暴雨的发生提供了充沛的水汽来源,而中尺度系统则在水汽的强烈辐合、向上输送,使对流层中下层达到准饱和状态扮演了十分重要的角色。  相似文献   
74.
利用天气图、卫星云图等资料,分析了0308号强热带风暴"天鹅"的高空环流形势及演变、双热带气旋的影响、日本24小时地面预报图和降水预报图以及FY-2云图,探讨了如何预报热带气旋的移动路径、登陆地点和时段,切实提高热带气旋活动的预报准确率.  相似文献   
75.
综合运用1998—2002年的降水资料和卫星导风资料, 统计分析了对流层上部的流场特征, 证实我国夏季出现重要降水过程时, 对流层上部存在3种特定的环流形势:我国南方雨带上空, 在对流层上部常伴有一个反气旋脊, 是中心位于青藏高原上空的反气旋向东的延伸, 强降水区位于该反气旋脊线和副热带西风急流之间的气流辐散区或脊线南侧热带东风的速度辐散区里, 以6—7月在我国长江流域和华南地区较为多见; 强降水区位于我国东部沿海对流层上部不对称反气旋外流区的西侧、高空变形场东侧, 常见于7—9月下旬; 强降水区位于高空槽前的西南气流里, 这种流型以7—8月时在我国30°N以北地区居多。  相似文献   
76.
夏季青藏高原东部降水变化与副热带高压带活动的研究   总被引:2,自引:1,他引:2  
用青藏高原上常规的台站资料和NCEP/NCAR的再分析资料,分析和研究了1993/1994年夏季5—8月青藏高原东部降水变化与西太平洋副热带高压南北移动的关系。结果表明:1993年夏季的副热带高压异常偏南,5—8月副高脊线北移过程中,还伴有准双周南北移动过程;而1994年夏季的副热带高压异常偏北,5—8月副高脊线北移过程中,则主要伴有30—60d的低频变化的南北移动过程。同时,在分析青藏高原上的天气变化特征时,发现这两年高原东部的降水变化特征也有明显的不同,夏季高原上降水的活跃和中断与副高脊线南北移动变化有类似的特征。因此,夏季西太平洋副热带高压南北移动可能与高原东部降水的中断/活跃有一定的关系。  相似文献   
77.
东亚副热带西风急流季节变化特征及其热力影响机制探讨   总被引:19,自引:0,他引:19  
况雪源  张耀存 《气象学报》2006,64(5):564-575
利用1961—2000年NCEP/NCAR月平均再分析资料对东亚副热带西风急流强度和位置的季节变化进行了分析,指出急流位置季节变化不仅有明显的南北向移动,6—7月还存在东西方向的突变特征,同时急流轴在北进过程中具有东西向的不一致性,急流中心强度的变化超前于位置的南北移动。在此基础上,采用动态追随急流中心移动的方法,探讨东亚副热带西风急流季节变化的热力影响机制,发现东亚副热带西风急流强度变化及位置移动与对流层中上层气温南北差异的分布结构有很好的对应关系,这说明急流的季节演变是对辐射季节变化及由于东亚特殊的海陆分布和青藏高原大地形影响而造成纬向不均匀加热的响应。从各热量输送项与急流的关系来看,从冬半年到夏半年的增暖时段,急流中心南北温差减小,急流减弱北进;从夏半年到冬半年的降温时段,急流中心南北温差增大,急流加强南退。热量平流输送的经向差异是造成急流中心南北温差的主要原因,急流跟随热量平流输送最大经向梯度中心位置南北移动。非绝热加热对急流中心的东西移动有引导作用,青藏高原春夏季对对流层中上层强大的加热作用是导致6—7月急流中心位置西移突变的原因。  相似文献   
78.
基于动力统计模型重构的副热带高压中长期预报   总被引:1,自引:0,他引:1  
洪梅  张韧  何金海 《气象学报》2006,64(6):780-789
基于T106数值预报产品500 hPa位势高度场序列,用EOF方法对位势场序列进行时、空分解,在考虑相邻时段位势场空间模态基本稳定的前提下,引入动力系统重构的思想,以EOF分解的空间模态时间系数序列作为动力统计模型变量,用遗传算法全局搜索和并行计算优势,进行了模型参数的优化反演,建立了EOF分解的时间系数的非线性预报模型。通过模型积分和EOF的时、空重构,实现了副热带高压活动场的中长期预报。试验结果表明,在短期预报(1—5 d)该模型与T106模式的预报效果大致相当;但对于中长期预报(≥5 d),其预报效果优于T106预报产品;特别是10 d以上的预报结果对副热带高压的形态和范围仍然能较为准确地描述。该研究方法对副热带高压等复杂天气系统和要素场预报提供了一种新的思路。  相似文献   
79.
对2006年7月4日南阳地区暴雨过程分析结果表明高空低槽、中低空切变线和较强的低空西南气流与地面气旋的配置,以及南阳西部处于风向和风速的辐合中心附近,为大暴雨的产生提供了动力条件;中低层水汽输送充足,为暴雨的产生提供了丰富的水汽条件;沙氏指数、K指数、I指数对暴雨天气的发生具有较好的指示意义;单站气象要素的变化对强降水的发生也具有较好的指示意义.  相似文献   
80.
张耀存  况雪源 《大气科学》2006,30(6):1177-1188
对IAP/LASG气候系统模式试验版(FGCM0)模拟对流层上层东亚副热带西风急流季节变化的能力进行评估, 分析FGCM0模拟的东亚副热带西风急流季节变化与NCEP/NCAR再分析资料的差异及其与对流层大气南北温差的关系.结果表明, FGCM0模拟的冬季和夏季西风急流垂直结构、水平结构和季节变化与NCEP/NCAR再分析资料基本一致, 但FGCM0模拟的东亚副热带西风急流在高原附近地区冬季和夏季都偏强, 沿115°E中国大陆地区上空模拟的急流强度冬季偏弱, 夏季明显偏强.夏季FGCM0模拟的急流中心位于高原东北部的40°N附近地区, 强度偏强, 位置偏东, 而此时NCEP/NCAR再分析资料中的急流中心却位于高原北侧.此外, FGCM0模拟的急流在5月份的北移和8月份的最北位置上与NCEP/NCAR再分析资料差异较大.分析副热带西风急流与对流层南北温差的季节变化发现, 急流出现的位置总是对应着对流层南北温度差较大区域, 与再分析资料相比, FGCM0模拟的温度差在冬季基本一致, 夏季差异较大.与降水的模拟相联系发现, FGCM0模拟得到的与实际不一致的偏西偏北的强降水中心与200 hPa上的东亚副热带急流位置和强度不合理具有密切关系.相关分析表明, 冬季西风急流强度与日本南部海区的感热通量、夏季与青藏高原地区的地面感热通量有明显的正相关关系, 而FGCM0能够较好地模拟冬季西风急流强度与地面感热通量之间的相关关系, 但模拟夏季青藏高原地区感热通量和副热带西风急流之间相关关系的能力相对较差, 夏季西风急流强度与OLR之间却有一定的关系.由于与强降水区相联系的OLR低值区对应着较大的对流凝结加热, 再加上模式中位于青藏高原东南部较大的地面感热加热, 增强了对流层的南北向温度差, 进而影响东亚副热带急流强度和位置.因此, FGCM0模拟的夏季副热带急流位置和强度偏差与高原附近地区的地面感热加热、大气射出长波辐射等的模拟偏差具有密切的关系.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号