首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   70篇
  国内免费   66篇
测绘学   25篇
大气科学   1篇
地球物理   17篇
地质学   292篇
海洋学   7篇
天文学   1篇
综合类   7篇
  2022年   1篇
  2021年   8篇
  2020年   26篇
  2019年   20篇
  2018年   16篇
  2017年   30篇
  2016年   32篇
  2015年   26篇
  2014年   23篇
  2013年   21篇
  2012年   32篇
  2011年   21篇
  2010年   8篇
  2009年   9篇
  2008年   10篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   9篇
  2002年   9篇
  2001年   5篇
  2000年   11篇
  1999年   6篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1993年   3篇
  1990年   1篇
排序方式: 共有350条查询结果,搜索用时 15 毫秒
51.
采用硝酸—氢氟酸—高氟酸混合体系,微波消解样品,用ICP-OES法测定煤样中微量元素P、Cu、Pb、Zn、Cr、Dd、Ni、Co,快速简便、准确度高。  相似文献   
52.
Gold and copper concentrations were determined in natural pyrite by near‐infrared femtosecond LA‐ICP‐QMS, using both sulfide reference materials (pyrrhotite Po‐726 and in‐house natural chalcopyrite Cpy‐RM) and NIST SRM 610 as external calibrators. Firstly, using NIST SRM 610 as the external calibrator, we calculated the Au concentration in Po‐726 and the Cu concentration in Cpy‐RM. The calculated concentration averages for Au and Cu were similar to the values published for Po‐726 and Cpy‐RM, respectively. Secondly, we calculated Au and Cu concentrations taking NIST SRM 610 as an unknown sample and using Po‐726 and Cpy‐RM as external calibrators. Again, the average values obtained closely reflected the preferred concentrations for NIST SRM 610. Finally, we calculated Au and Cu concentrations in natural pyrite using sulfide and silicate reference materials as external calibrators. In both cases, calculated concentrations were very similar, independent of the external calibrator used. The aforementioned data, plus the fact that we obtained very small differences in relative sensitivity values (percentage differences are between 5% and 17% for 57Fe, 63Cu and 197Au) on analyses of silicate and sulfide RMs, indicate that there were no matrix effects related to the differences in material composition. Thus, it is possible to determine Au and Cu in natural sulfides using NIST silicate glasses as an external calibrator.  相似文献   
53.
An in situ, medium‐resolution LA‐ICP‐MS method was developed to measure the abundances of the first‐row transition metals, Ga and Ge in a suite of geological materials, namely the MPI‐DING reference glasses. The analytical protocol established here hinged on maximising the ablation rate of the ultraviolet (UV) laser system and the sensitivity of the ICP‐MS, as well minimising the production of diatomic oxides and argides, which serve as the dominant sources of isobaric interferences. Non‐spectral matrix effects were accounted for by using multiple external calibrators, including NIST SRM 610 and the USGS basaltic glasses BHVO‐2G, BIR‐1G and BCR‐2G, and utilising 43Ca as an internal standard. Analyses of the MPI‐DING reference glasses, which represent geological matrices ranging from basaltic to rhyolitic in composition, included measurements of concentrations as low as < 100 μg g?1 and as high as > 104 μg g?1. The new data reported here were found to statistically correlate with the ‘preferred’ reference values for these materials at the 95% confidence level, though with significantly better precision, typically on the order of ≤ 3% (2sm). This analytical method may be extended to any matrix‐matched geological sample, particularly oceanic basalts, silicate minerals and meteoritic materials.  相似文献   
54.
Here we report uranium and thorium isotopic ratios and elemental concentrations measured in solid reference materials from the USGS (BHVO‐2G, BCR‐2G, NKT‐1G), as well as those from the MPI‐DING series (T1‐G, ATHO‐G). Specifically created for microanalysis, these naturally‐sourced glasses were fused from rock powders. They cover a range of compositions, elemental concentrations and expected isotopic ratios. The U‐Th isotopic ratios of two powdered source materials (BCR‐2, BHVO‐2) were also characterised. These new measurements via multi‐collector thermal ionisation mass spectrometry and multi‐collector inductively coupled plasma‐mass spectrometry can now be used to assess the relative performance of techniques and facilitate comparison of U‐Th data amongst laboratories in the geoscience community for in situ and bulk analyses.  相似文献   
55.
A new method for the simultaneous recovery of U, Th and Pb from ca. 0.5 g calcium carbonate samples for the purpose of U‐(Th)‐Pb geochronometry is presented. The protocol employs ion‐exchange chromatography. Standard anion exchange resin (AG 1‐X8 100–200 mesh) was used as the static phase, and 90% acetic acid was used as the mobile phase to elute the unwanted matrix components; dilute nitric acid was used to elute the U, Th and Pb. Blanks of 1.8 pg Th, 6.4 pg Pb and 8.4 pg U were obtained. The protocol was evaluated by determining the isotopic composition of U‐Th‐Pb separates obtained from an in‐house reference material (prepared from a natural speleothem) by MC‐ICP‐MS. An independently dated speleothem was also reanalysed. Based on these tests, the extraction protocol had an acceptable blank and produced a Pb separate sufficiently free of matrix‐induced instrumental biases to be appropriate for U‐Th‐Pb chronology.  相似文献   
56.
The natural river water certified reference material SLRS‐5 (NRC‐CNRC) was routinely analysed in this study for major and trace elements by ten French laboratories. Most of the measurements were made using ICP‐MS. Because no certified values are assigned by NRC‐CNRC for silicon and 35 trace element concentrations (rare earth elements, Ag, B, Bi, Cs, Ga, Ge, Li, Nb, P, Rb, Rh, Re, S, Sc, Sn, Th, Ti, Tl, W, Y and Zr), or for isotopic ratios, we provide a compilation of the concentrations and related uncertainties obtained by the participating laboratories. Strontium isotopic ratios are also given.  相似文献   
57.
A range of independently characterised reference materials (RMs) for LA‐ICP‐MS, used for the determination of the platinum‐group elements (PGE) and Au in a sulfide matrix, were analysed and compared: 8b, PGE‐A, NiS‐3, Po727‐T1, Po724‐T and the Lombard meteorite. The newly developed RM NiS‐3 was used as the RM for the calibration of all LA‐ICP‐MS analyses and the measured concentrations of the other RMs compared against their published concentrations. This data were also used to assess the consistency of concentrations calibrated against the different RMs. It was found that Po727‐T1 and 8b produced results that were comparable, within uncertainty, for all elements. Po727‐T1 also produced consistent results with NiS‐3 for all elements. All other RMs showed differences for some elements, especially Ru in Po724‐T, and Os, Ir and Au in PGE‐A. The homogeneity of the PGE and Au in each RM was assessed, by comparing the precision of multiple LA‐ICP‐MS spot analyses with the average uncertainty of the signal. Po724‐T, Po727‐T1 and the Lombard meteorite were found to be homogeneous for all elements, but 8b, PGE‐A and NiS‐3 were heterogeneous for some elements. This is the first direct comparison between a range of independently characterised PGE and Au LA‐ICP‐MS RMs.  相似文献   
58.
Research into natural mass‐dependent stable isotope fractionation of cadmium has rapidly expanded in the past few years. Methodologies are diverse with MC‐ICP‐MS favoured by all but one laboratory, which uses thermal ionisation mass spectrometry (TIMS). To quantify the isotope fractionation and correct for instrumental mass bias, double‐spike techniques, sample‐calibrator bracketing or element doping has been used. However, easy comparison between data sets has been hampered by the multitude of in‐house Cd solutions used as zero‐delta reference in different laboratories. The lack of a suitable isotopic reference material for Cd is detrimental for progress in the long term. We have conducted a comprehensive round‐robin assay of NIST SRM 3108 and the Cd isotope offsets to commonly used in‐house reference materials. Here, we advocate NIST SRM 3108 both as an isotope standard and the isotopic reference point for Cd and encourage its use as ‘zero‐delta’ in future studies. The purity of NIST SRM 3108 was evaluated regarding isobaric and polyatomic molecular interferences, and the levels of Zn, Pd and Sn found were not significant. The isotope ratio 114Cd/110Cd for NIST SRM 3108 lies within ~ 10 ppm Da?1 of best estimates for the Bulk Silicate Earth and is validated for all measurement technologies currently in use.  相似文献   
59.
等离子体发射光谱法测定大气颗粒物中的无机元素   总被引:14,自引:4,他引:10  
建立了用等离子体发射光谱(ICP-AES)测定大气颗粒物中无机元素的分析方法,包括样品消解体系的选择,仪器的操作条件及采样滤膜的选择,产对自行采样分析测得的无机元素数据作了初步的讨论。实验结果表明:采用HNO3-HClO4消解体系,操作方便,样品消解较完全;选用石英滤膜查减低空白值,保证测定质量以及同时在一张滤膜上测定大气颗粒物中的有机碳、元素碳及无机元素;内标法可有效降低由于仪器漂移等因素对测定  相似文献   
60.
报道了用王水-HF溶样,ICP-AES同时测定海洋沉积物中18种常量、微量元素的方法.该方法简便、快捷,其准确度、精密度及检出限均好.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号