首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   7篇
测绘学   1篇
大气科学   11篇
地球物理   51篇
地质学   82篇
海洋学   15篇
天文学   53篇
综合类   2篇
自然地理   25篇
  2021年   3篇
  2020年   4篇
  2019年   2篇
  2018年   7篇
  2017年   10篇
  2016年   4篇
  2015年   2篇
  2014年   4篇
  2013年   17篇
  2012年   3篇
  2011年   11篇
  2010年   8篇
  2009年   8篇
  2008年   8篇
  2007年   11篇
  2006年   9篇
  2005年   2篇
  2004年   5篇
  2003年   7篇
  2002年   8篇
  2001年   7篇
  2000年   5篇
  1999年   1篇
  1998年   6篇
  1997年   6篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   4篇
  1989年   4篇
  1988年   5篇
  1987年   6篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   5篇
  1977年   5篇
  1976年   1篇
  1975年   4篇
  1973年   3篇
  1972年   2篇
  1971年   1篇
  1968年   1篇
排序方式: 共有240条查询结果,搜索用时 221 毫秒
61.
62.
63.
64.
Geochemical analyses of granitic rocks from southwest England reveal that the rare earth elements (REE) were potentially mobile during hydrothermal and supergene alteration. In particular, trivalent REE were removed from the system during K-silicate alteration, Eu was lost during sericitic alteration; all REE were lost during tourmalinization, and light REE were lost during chloritization and argillic alteration. The fluids themselves had low concentrations of REE; in only one case (chloritization) were heavy REE introduced during alteration. Analysis of separated minerals indicated that the behaviour of the REE could be partly explained in terms of their different affinities for the primary and secondary assemblages. Thermodynamic calculations indicated that REE mobility is enhanced by the presence of fluorine in the alteration fluids partly because REE form more stable complexes with F than with Cl and partly because elements such as Ti, Zr and P that form REE-bearing minor phases are themselves potentially mobile.  相似文献   
65.
Agencies responsible for issuing permits authorizing excavation of marine sands and gravels have provided information on the amounts of aggregates removed from coastal waters off the New England and Middle Atlantic states. This information is reported herein. Major increases in marine mining are projected. The significance to fisheries of mining marine aggregates is discussed.  相似文献   
66.
Metallic iron has been precipitated from a synthetic high-iron, high-titanium Apollo 11 composition glass powder in a furnace with the oxygen fugacity controlled by gas mixing techniques. Measurable quantities of iron, as determined with a vibrating sample magnetometer capable of detecting 0.01 wt% iron in the absence of ferromagnetic minerals, were produced in experiments at temperatures between 700°C and 1045°C, with run times between 3 hr and 95 hr, and oxygen fugacities between 1 and 2 orders of magnitude below the iron-wustite (IW) buffer curve. Such conditions of ?O2 and T are probably not greatly different from those occurring in a large lunar ejecta blanket. The oxygen fugacity determines the amount of iron produced for a given time and temperature, with about 1% produced if log ?O2 is 1.4 units below the IW buffer curve and about 3.5% produced if log ?O2 is 1.7 units below at 990°C. Above 950°C essentially all the iron is multidomain (>300Å) while below 950°C as much as 15% is single domain (150Å–300Å) and an appreciable quantity remains even smaller. Compaction of the sample slows the rate of reduction but does not influence the grain size of metal. The quantities and size distribution of the reduced iron in a number of the experimental runs are strongly analogous to certain lunar soils and breccias and indicate that reduction in an ejected blanket could partly account for the excess iron of lunar soils and breccias relative to the igneous rocks.  相似文献   
67.
A coupled hydro-geomechanical modelling environment, developed to evaluate the coupled responses of fluid flow in deforming discontinuous media, is described. A staggered computational framework is presented, where the two simulations tools, HYDRO and DDA, communicate via the mapping of an equivalent porosity (and related permeabilities) from the rock system to the fluid phase and an inverse mapping of the pressure field. Several algorithmic and modelling issues are discussed, in particular the computational procedure to map the current geometry of the discontinuous rock blocks assembly into an equivalent porosity (and permeability) field. A generic, geometrically simple, overpressured reservoir/seal system is analysed for illustration. Further examples investigate discontinuous, fractured configurations in flexure causing a degree of spatial variability in the induced stresses. Model predictions show that the combination of hydraulic and mechanical loads causes a dilational opening of some pre-existing fractures and closure of others, with strong localisation of the modified flow pattern along wider fracture openings.  相似文献   
68.
The Eastern Anatolia Region exhibits one of the world's best exposed and most complete transects across a volcanic province related to a continental collision zone. Within this region, the Erzurum–Kars Plateau is of special importance since it contains the full record of collision-related volcanism from Middle Miocene to Pliocene. This paper presents a detailed study of the volcanic stratigraphy of the plateau, together with new K–Ar ages and several hundred new major- and trace-element analyses in order to evaluate the magmatic evolution of the plateau and its links to collision-related tectonic processes. The data show that the volcanic units of the Erzurum–Kars Plateau cover a broad compositional range from basalts to rhyolites. Correlations between six logged, volcano-stratigraphic sections suggest that the volcanic activity may be divided into three consecutive Stages, and that activity begins slightly earlier in the west of the plateau than in the east. The Early Stage (mostly from 11 to 6 Ma) is characterised by bimodal volcanism, made up of mafic-intermediate lavas and acid pyroclastic rocks. Their petrography and high-Y fractionation trend suggest that they result from crystallization of anhydrous assemblages at relatively shallow crustal levels. Their stratigraphy and geochemistry suggest that the basic rocks erupted from small transient chambers while the acid rocks erupted from large, zoned magma chambers. The Middle Stage (mostly from 6–5 Ma) is characterised by unimodal volcanism made up predominantly of andesitic–dacitic lavas. Their petrography and low-Y fractionation trend indicate that they resulted from crystallization of hydrous (amphibole-bearing) assemblages in deeper magma chambers. The Late Stage (mostly 5–2.7 Ma) is again characterised by bimodal volcanism, made up mainly of plateau basalts and basaltic andesite lavas and felsic domes. Their petrography and high-Y fractionation trend indicate that they resulted from crystallization of anhydrous assemblages at relatively shallow crustal levels. AFC modelling shows that crustal assimilation was most important in the deeper magma chambers of the Middle Stage. The geochemical data indicate that the parental magma changed little throughout the evolution of the plateau. This parental magma exhibits a distinctive subduction signature represented by selective enrichment in LILE and LREE thought to have been inherited from a lithosphere modified by pre-collision subduction events. The relationships between magmatism and tectonics support models in which delamination of thickened subcontinental lithosphere cause uplift accompanied by melting of this enriched lithosphere. Magma ascent, and possibly magma generation, is then strongly controlled by strike-slip faulting and associated pull-apart extensional tectonics.  相似文献   
69.
Many of the observed features of zoning in magmatic phenocrysts may be due to the orientation of the section rather than inherent properties of the crystals. An ideal section for the studying of zoning in magmatic crystals has two characteristics: it goes through the center of the crystal, and is perpendicular to one or more crystal faces. Using a model zoned olivine crystal, it is possible to construct accurate zoning profiles for different types of section (centered, symmetrical and skewed). The probability of obtaining a random section which passes within x% of the center of a crystal is shown to be P=0.0x, while the probability that a random section will be within A degrees of perpendicular to a given plane is P=sin(A). A systematic approach to the study of zoned crystals is outlined. In particular, it is suggested that composition be plotted against distance cubed, in order to correct for the volume versus size problem. A method of determining if a given section goes through (or near) the center of a zoned crystal is also presented. The reasoning in this work applies to other types of magmatic crystals such as pyroxenes and plagioclase.  相似文献   
70.
Petrogenesis of collision-related plutonics in Central Anatolia, Turkey   总被引:7,自引:0,他引:7  
Central Anatolia exhibits good examples of calc-alkaline and alkaline magmatism of similar age in a collision-related tectonic setting (continent–island arc collision). In the Central Anatolia region, late Cretaceous post-collisional plutonic rocks intrude Palaeozoic–Mesozoic metamorphic rocks overthrust by Upper Cretaceous ophiolitic units to make up the Central Anatolian Crystalline Complex.

In the complex, three different intrusive rock types may be recognised based on their geochemical characteristics: (i) calc-alkaline (Behrekdag, Cefalikdag, and Celebi); (ii) subalkaline-transitional (Baranadag); and (ii) alkaline (Hamit). The calc-alkaline and subalkaline plutonic rocks are metaluminous I-type plutons ranging from monzodiorite to granite. The alkaline plutonic rocks are metaluminous to peralkaline plutons, predominantly A-type, ranging from nepheline monzosyenite to quartz syenite.

All intrusive rocks show enrichment in LILE and LREE relative to HFSE, and have high 87Sr/86Sr and low 143Nd/144Nd ratios. These characteristics indicate an enriched mantle source region(s) carrying a subduction component inherited from pre-collision subduction events. The tectonic discrimination diagram of Rb vs. (Y+Nb) suggests that the calc-alkaline, subalkaline, and alkaline plutonic rocks have been affected by crustal assimilation combined with fractional crystallisation processes.

The coexistence of calc-alkaline and alkaline magmatism in the Central Anatolian Crystalline Complex may be attributed to mantle source heterogeneity before collision. The former carries a smaller intraplate component and pre-subduction enrichment compared to the latter. Either thermal perturbation of the metasomatised lithosphere by delamination of the thermal boundary layer (TBL), or removal of a subducted plate (slab breakoff) is the likely mechanism for the initiation of the post-collisional magmatism in the Complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号