首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   5篇
  国内免费   2篇
测绘学   1篇
大气科学   4篇
地球物理   56篇
地质学   83篇
海洋学   23篇
天文学   10篇
综合类   1篇
自然地理   5篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   4篇
  2018年   6篇
  2017年   8篇
  2016年   13篇
  2015年   1篇
  2014年   5篇
  2013年   10篇
  2012年   7篇
  2011年   8篇
  2010年   6篇
  2009年   8篇
  2008年   17篇
  2007年   9篇
  2006年   7篇
  2005年   3篇
  2004年   8篇
  2003年   11篇
  2002年   2篇
  2001年   6篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有183条查询结果,搜索用时 46 毫秒
71.
To clarify the geological causes of rockslides induced by rainstorms in accretionary complexes, the geology and geomorphology of two large rockslides (volumes > 106 m3) induced by the heavy rainfall of Typhoon Talas in the Shimanto Belt, Kii Mountains, Japan in 2011 are investigated. Our analysis reveals that thrusts with brittle crush zones controlled the occurrence of the rockslides. The properties and distribution of thrusts were poorly constrained before this study. Flooding during the rainstorm removed surface materials along rivers, allowing thorough geological mapping to be performed. Gravitationally deformed slopes were studied using GIS analysis of 1 m digital elevation models (DEMs) and fieldwork, and X‐ray diffraction (XRD) analysis, permeability, and direct shear tests were used to characterize the mineralogy and geotechnical properties of fault gouge. The Kawarabi thrust has a brittle crush zone up to 6 m thick and acts as the sliding surface for both landslides. The thrust dips 34° downslope and is cut by high‐angle faults and joints along one or both sides of each landslide body. Prior to failure, the upper part of the slope contained small scarps, suggesting that the slopes were already gravitationally deformed. The slope instability can be attributed to long‐term river erosion, which has undercut the slope and exposed the thrust at the base of the slope. The groundwater level, monitored in boreholes, suggests that the Kawarabi thrust is a barrier to groundwater flow. The weak and impermeable nature of the thrust played an essential role in the generation of gravitational slope deformation and catastrophic failure during periods of increased rainfall. Thrusts are a common feature of accretionary complexes, including in the Shimanto Belt, and the mechanism of slope failure stated above can be typical of rockslides in accretionary complexes and provide new insights into landslide disaster mitigation.  相似文献   
72.
The Khoy ophiolitic complex in Northwestern Iran is a part of the Tethyan ophiolite belt, and is divided into two sections: the Eastern ophiolite in Qeshlaq and Kalavanes (Jurassic–Cretaceous) and the Western ophiolite in Barajouk, Chuchak and Hessar (Late Cretaceous). Our chromitites can be clearly classified into two groups: high‐Al chromitites (Cr# = 0.38–0.44) from the Eastern ophiolite, and high‐Cr chromitites (Cr# = 0.54–0.72) from the Western ophiolite. The chromian spinels in high‐Al chromitite include primary mineral inclusions mainly as Na‐bearing diopside and pargasite with subordinate rutile and their formation was probably related to reaction between a MORB (mid‐ocean‐ridge basalt)‐like melt with depleted harzburgite, possibly in a back‐arc setting. Their host harzburgites contain clinopyroxene with higher contents of Al2O3, Na2O, Cr2O3, and TiO2 relative to Western harzburgites and are possibly residue after moderate partial melting (~15 %) whereas the Western harzburgite is residue after high partial melting (~25 %). The chromian spinel in the Western Khoy chromitites contains inclusions such as clinopyroxene, olivine and platinum group mineral‐bearing sulfides. These Western chromitites were possibly formed at two stages during arc growth and are divided into the moderately high‐Cr# chromitites (Barajouk and Hessar) and the high‐Cr# chromitites (Chuchak A and C). The former crystallized from island‐arc‐tholeiite (IAT) melts during reaction with the host depleted harzburgites, whereas the latter crystallized from boninitic melts (second stage melt) during reaction with highly depleted harzburgite in a supra‐subduction‐zone environment. Based on the mineral chemistry of chromian spinels, pyroxenes, and mineral inclusions, the chromitites and the host peridotites from the Eastern and Western Khoy ophiolites were formed in a back‐arc basin and arc‐related setting, respectively. The Khoy ophiolitic complex is a tectonic aggregate of the two different ophiolites formed in two different tectonic settings at different ages.  相似文献   
73.
青藏高原花石峡冻土站高寒湿地CH4排放研究   总被引:10,自引:3,他引:7  
金会军 《冰川冻土》1998,20(2):172-174
利用静态箱技术对青藏高原花石峡冻土站附近湿地生态系统CH4排放的初步调查表明,各个植物群落内部和不同群落之间的CH4排放量变化都很大.花石峡地区高寒湿地基本可分为潮湿高寒草甸、沼泽化草甸、杉叶藻沼泽和毛柄水毛茛沼泽,其群落夏季CH4平均排放量分别为4431,1005,4594和-028mg·m-2d-1.花石峡融化季节CH4排放量为408g·m-2a-1.简单外推表明,青藏高原高寒湿地CH4年排放量约为1Tg·a-1.  相似文献   
74.
We found extremely high-Mg# (=Mg/(Mg + total Fe) atomic ratio) ultramafic rocks in Avacha peridotite suite. All the high-Mg# rocks have higher modal amounts of clinopyroxene than ordinary Avacha peridotite xenoliths, and their lithology is characteristically heterogeneous, varying from clinopyroxenite through olivine websterite to pyroxene-bearing dunite. The Mg# of minerals is up to 0.99, 0.98 and 0.97 in clinopyroxene, orthopyroxene and olivine, respectively, decreasing progressively toward contact with dunitic part, if any. The petrographical feature of pyroxenes in the high-Mg# pyroxenite indicates their metasomatic origin, and high LREE/HREE ratio of the metasomatic clinopyroxene implies that the pyroxenites are the products of reaction between dunitic peridotites and high-Ca, silicate-rich fluids. The lithological variation of the Avacha high-Mg# pyroxenites from clinopyroxenite to olivine websterite resulted from various degrees of fluid-rock reaction coupled with fractional crystallization of the high-Ca fluids, which started by precipitation of high-Mg# clinopyroxene. Such fluids were possibly generated originally at a highly reduced serpentinized peridotite layer above the subducting slab. The fluids can reach the uppermost mantle along a shear zone as a conduit composed of fine-grained peridotite that developed after continent-ward asthenospheric retreats from the mantle wedge beneath the volcanic front. The fluids are incorporated in mantle partial melts when the magmatism is activated by expansion of asthenosphere to mantle wedge beneath the volcanic front.  相似文献   
75.
The ophiolitic peridotites in the Wadi Arais area, south Eastern Desert of Egypt, represent a part of Neoproterozoic ophiolites of the Arabian-Nubian Shield (ANS). We found relics of fresh dunites enveloped by serpentinites that show abundances of bastite after orthopyroxene, reflecting harzburgite protoliths. The bulk-rock chemistry confirmed the harzburgites as the main protoliths. The primary mantle minerals such as orthopyroxene, olivine and chromian spinel in Arais serpentinites are still preserved. The orthopyroxene has high Mg# [=Mg/(Mg + Fe2+)], ~0.923 on average. It shows intra-grain chemical homogeneity and contains, on average, 2.28 wt.% A12O3, 0.88 wt.% Cr2O3 and 0.53 wt.% CaO, similar to primary orthopyroxenes in modern forearc peridotites. The olivine in harzburgites has lower Fo (93?94.5) than that in dunites (Fo94.3?Fo95.9). The Arais olivine is similar in NiO (0.47 wt.% on average) and MnO (0.08 wt.% on average) contents to the mantle olivine in primary peridotites. This olivine is high in Fo content, similar to Mg-rich olivines in ANS ophiolitic harzburgites, because of its residual origin. The chromian spinel, found in harzburgites, shows wide ranges of Cr#s [=Cr/(Cr + Al)], 0.46?0.81 and Mg#s, 0.34?0.67. The chromian spinel in dunites shows an intra-grain chemical homogeneity with high Cr#s (0.82?0.86). The chromian spinels in Arais peridotites are low in TiO2, 0.05 wt.% and YFe [= Fe3+/(Cr + Al + Fe3+)], ~0.06 on average. They are similar in chemistry to spinels in forearc peridotites. Their compositions associated with olivine’s Fo suggest that the harzburgites are refractory residues after high-degree partial melting (mainly ~25?30 % partial melting) and dunites are more depleted, similar to highly refractory peridotites recovered from forearcs. This is in accordance with the partial melting (>20 % melt) obtained by the whole-rock Al2O3 composition. The Arais peridotites have been possibly formed in a sub-arc setting (mantle wedge), where high degrees of partial melting were available during subduction and closing of the Mozambique Ocean, and emplaced in a forearc basin. Their equilibrium temperature based on olivine?spinel thermometry ranges from 650 to 780 °C, and their oxygen fugacity is high (Δlog ?O2?=?2.3 to 2.8), which is characteristic of mantle-wedge peridotites. The Arais peridotites are affected by secondary processes forming microinclusions inside the dunitic olivine, abundances of carbonates and talc flakes in serpentinites. These microinclusions have been formed by reaction between trapped fluids and host olivine in a closed system. Lizardite and chrysotile, based on Raman analyses, are the main serpentine minerals with lesser antigorite, indicating that serpentines were possibly formed under retrograde metamorphism during exhumation and near the surface at low T (<400 °C).  相似文献   
76.
Located off the Pacific coast of central Tohoku (NE Japan), the Ishinomaki slope channel (ISC) provides an excellent opportunity to study a structure-controlled intraslope channel and downslope sedimentation along the active margin. The seismic reflection data across ISC show an extensive basal surface and overlying channel complexes between the basement structures of the Abukuma ridge to the south and Kitakami massif to the north, indicating that the formation of the intraslope basin, channelization of ISC and sedimentation of the downstream channel-lobe transition zone (CLTZ) are very likely to be structure-controlled. The oblique channel stacking pattern, faulting of the seafloor and subsurface Abukuma ridge in the upper and lower domains of ISC, collectively suggest that ISC has migrated northward and is currently under the influence of active compression. Differences in styles of accommodation space between the upper and lower domains of ISC suggest that differential subsidence occurred along the strike-slip tectonic line. Based on the regional strike-slip tectonic line, we propose that a Kitakami-Abukuma ridge existed before the formation of ISC. The strike-slip faulting divided the Kitakami-Abukuma ridge into the Kitakami massif to the north and the Abukuma ridge to the south, and an intervening fault trough as the precursor of the intraslope basin and ISC. As the subduction of the Pacific Plate and associated compressional events continued, the Abukuma ridge was reactivated to narrow the intraslope basin into a confined channel. Located near the epicentre of the devastating 2011 Tohoku earthquake event, the ISC, downstream CLTZ and underlying intraslope basin provide information on active basement structure and the evolving sediment routing system on the tectonically active margin.  相似文献   
77.
Large, shallow‐water lakes located on floodplains play an important role in creating highly productive ecosystems and are prone to high concentrations of suspended solids due to sediment resuspension. In this study, the aim was to determine the dominant processes governing the total suspended solid (TSS) concentration at the water surface in Tonle Sap Lake, Cambodia, which is a large, shallow‐water lake. Satellite remotely sensed daily reflectance data from 2003 to 2017 were used. Seasonal changes in TSS concentration indicated that bottom sediment resuspension during dry seasons was mostly caused by wind and the TSS concentration was closely correlated with the water depth of the lake. The TSS concentration during flood periods was controlled by both wind and inflow currents from the Tonle Sap River. Additionally, we confirmed that surface/subsurface flow with a low TSS concentration from forests on the floodplain lowered the TSS concentration year round, except during August and September. This fact implied that the floodplain forest area decrease may increase the lake TSS concentration. An analysis of the long‐term changes in TSS indicated that a decrease in the water level during flood periods resulted in the high TSS concentrations observed during the subsequent dry periods. Therefore, climate change and water resource development, which are likely to cause water level reductions in the Mekong River during flood periods, may increase the TSS concentration in Tonle Sap Lake, particularly during the dry season.  相似文献   
78.
79.
80.
The detection of glacial lake change in the Himalayas, Nepal is extremely significant since the glacial lake change is one of the crucial indicators of global climate change in this area, where is the most sensitive area of the global climate changes. In the Himalayas, some of glacial lakes are covered by the dark mountains′ shadow because of their location. Therefore, these lakes can not be detected by conventional method such as Normalized Difference Water Index (NDWI), because the reflectance feature of shadowed glacial lake is different comparing to the ones which are located in the open flat area. The shadow causes two major problems: 1) glacial lakes which are covered by shadow completely result in underestimation of the number of glacial lakes; 2) glacial lakes which are partly identified are considered to undervalue the area of glacial lakes. The aim of this study is to develop a new model, named Detection of Shadowed Glacial Lakes (DSGL) model, to identify glacial lakes under the shadow environment by using Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) data in the Himalayas, Nepal. The DSGL model is based on integration of two different modifications of NDWI, namely NDWIs model and NDWI she model. NDWIs is defined as integration of the NDWI and slope analysis and used for detecting non-shadowed lake in the mountain area. The NDWIshe is proposed as a new methodology to overcome the weakness of NDWIs on identifying shadowed lakes in highly elevated mountainous area such as the Himalayas. The first step of the NDWIshe is to enhance the data from ASTER 1B using the histogram equalization (HE) method, and its outcome product is named ASTER he . We used the ASTER he for calculating the NDWI he and the NDWIshe . Integrated with terrain analysis using Digital Elevation Model (DEM) data, the NDWI she can be used to identify the shadowed glacial lakes in the Himalayas. NDWIs value of 0.41 is used to identify the glacier lake (NDWIs≥0.41), and 0.3 of NDWIshe is used to identify the shadowed glacier lake (NDWIshe≤0.3). The DSGL model was proved to be able to classify the glacial lakes more accurately, while the NDWI model had tendency to underestimate the presence of actual glacial lakes. Correct classification rate regarding the products from NDWI model and DSGL model were 57% and 99%, respectively. The results of this paper demonstrated that the DSGL model is promising to detect glacial lakes in the shadowed environment at high mountains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号