首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
测绘学   1篇
大气科学   1篇
地球物理   6篇
地质学   7篇
海洋学   19篇
天文学   3篇
自然地理   2篇
  2019年   2篇
  2014年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2004年   2篇
  2003年   2篇
  1998年   1篇
  1997年   5篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   2篇
  1986年   2篇
  1985年   3篇
  1983年   3篇
  1980年   2篇
  1979年   2篇
  1975年   1篇
  1970年   1篇
排序方式: 共有39条查询结果,搜索用时 921 毫秒
11.
Marine aerosols in the western North Pacific were collected using a cascade impactor. Size-separated aerosols were analyzed for organic carbon, alkanes and polycyclic aromatic hydrocarbons (PAH). The results showed that the rate of decrease of the atmospheric concentrations of these organic components with increase in distance from Japan as well as from the coast of the Eurasian Continent was in the order PAHalkanes>organic carbon. The bulk of all these organic components occurred in the smallest size fraction of particles (<1m). Analysis of the alkanes and PAH indicated that the hydrocarbons in aerosols in Japanese coastal marine areas are primarily derived from terrestrial anthropogenic sources which also contribute to a lesser extent to aerosols in marine areas about 1,000 km off the coast of Japan. In remote marine areas the hydrocarbons on small particles (<1m) have principally a natural terrestrial origin while those on larger particles are marine in origin.  相似文献   
12.
Sinking particles were analyzed for their nitrogen isotopic ratio δ15N) of total particulate nitrogen (PN), stable carbon isotopic ratio (δ13C) and radioactive isotopic ratio (δ14C) of total particulate organic carbon (POC), at three different latitudinal (temperate, subpolar and equatorial) and geomorphological (trench, proximal abyssal plain and distal abyssal plain) sites in the western North Pacific Ocean using year-long time series sediment trap systems, to clarify the common vertical trends of the isotopic signals in deep water columns. Although the δ15N and δ13C values of sinking particulate organic matter (POM) were partly affected by the resuspension of sedimentary POM from the sea floor, especially in the trench, the changes in δ15N and δ13C values owing to the resuspension could be corrected by calculation of the isotopic mass balance from δ14C of sinking POC. After this correction, common downward decreasing trends in δ15N and δ13C values were obtained in the deep water columns, irrespective of the latitudes and depths. These coincidental isotopic signals between δ15N and δ13C values provide new constraints for the decomposition process of sinking POM, such as the preferential degradation of 15N- and 13C-rich compounds and the successive re-formation of the sinking particles by higher trophic level organisms in the deep water column.  相似文献   
13.
Sediment traps were deployed at 5 depths of 100 through 5,250 m to collect suspended sediments in the northern North Pacific (47°51.1'N; 176°20.6'E, 5,300 m deep) in the summer of 1978. Fatty acid composition was determined in the samples of phytoplankton, particulate matter, trap sediment and bottom sediment.Fatty acid composition of the trap sediments revealed no significant vertical trend throughout the water column from depths of 100 to 5,250 m, and were also similar to those of the phytoplankton and the particulate matter from the euphotic layer. However, a marked difference in the fatty acid composition was observed between the trap sediments and the particulate matter from deep waters. Therefore, it can be concluded that the source of fatty acids in the trap sediments is the particulate matter from the euphotic layer but not from deep waters.Unsaturated fatty acids highly susceptible to biological agents were rather abundant in the trap sediments as well as in the phytoplankton and particulate matter from the euphotic layer, however no unsaturated fatty acid was found in the particulate matter from deep waters. From these findings, it is clear that the particulate matter of the euphotic layer is transported to deep waters very rapidly. As the sinking rate of fecal pellets produced by zooplankton is in the range of ten to hundreds of meters a day, fecal pellets are assumed to be the most likely carrier of rapid-transport of organic matter including fatty acids from the euphotic layer to deep waters.  相似文献   
14.
Chemistry of organic materials of the suspended and sinking particles, and the evaluation of the particulate materials for the carbon cycle of the ocean are described in this paper. Organic carbon (POC) and nitrogen (PON) of the suspended particles collected from various areas of the North through South Pacific were determined with considerably high variabilities in their concentration. Higher values of the POC and PON were obtained in the surface water of the higher latitudinal areas of both northern and southern hemispheres and the equatorial Pacific, while the lower values of these organic elements were measured in the middle latitudinal areas of the Pacific. These facts clearly indicate that inorganic nutrients supply to the surface water layers from the underlying water is primarily determinative factor to govern the concentration of the POC and PON in the surface water layer. POC and PON concentrations in the intermediate through deep waters, however, are much less variable in time and space. Carbohydrates, free and combined amino acids and lipid materials were major organic constituents of the suspended particles. The organic composition of the particles was extensively variable in region, time and depth. Such change in the organic composition was mainly caused by the production and decay of the free and combined amino acids, lipid materials and water extractable carbohydrate. Sinking particle which has high sinking rate over 100 m day−1 and can be collected only by sediment trap, also consists of carbohydrates, free and combined amino acids and lipid materials. A detailed analysis of the particle indicate that the sinking particle was much different from the suspended particle from the intermediate through deep waters in terms of the abundance of the biologically susceptible organic materials such as unsaturated hydrocarbon, fatty acid and water extractable carbohydrate often found in phytoplankton. These facts clearly indicate that the sinking particle plays an important role on the vertical transport of the biologically susceptible organic materials from the surface water to the deep water. Vertical flux of organic materials in various water depths was extensively measured in the North Pacific and Antarctic Ocean using the depth-series sediment trap system to collect the sinking particles from various depths of the waters. Regional and seasonal variabilities of the organic carbon flux at the various depths were obviously observed, however the attenuation rate of the organic carbon flux in the intermediate through deep water was not changed so much irrespective of the sampling time and region. The time-series sediment trap system was also using to determine the seasonal variation of the organic carbon flux. An average organic carbon flux at 1 km depth from this trap system was almost comparable to the amount of organic carbon degraded in the water deeper than 1 km depth, which was calculated from oxygen consumption rate of the deep water. Thus, it is clear that the sinking particle must play an important role in the carbon cycle of the deep water.  相似文献   
15.
Geochemistry and Genesis of Fluoride-Containing Ground Waters in India   总被引:13,自引:0,他引:13  
B. K. Handa 《Ground water》1975,13(3):275-281
  相似文献   
16.
A ring of compact radio continuum sources was found atl=24°.6b=0°.0, which we call the Scutum ring. Radio continuum,Hi line, and CO line observations are suggested that it is a star-forming region triggered by an expanding diffuseHii region.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.NRO, a branch of the Tokyo Astronomical Observatory, University of Tokyo, is a cosmic radio observing facility open for outside users.  相似文献   
17.
Sinking particles collected from year-long time-series sediment traps at 1674, 4180, 5687 and 8688 m depths, the underlying bottom sediment at 9200 m depth, and suspended particles from surface and subsurface waters in the northwestern North Pacific off Japan were analyzed for long-chain alkenones and alkyl alkenoates (A&A) which are derived mainly from Gephyrocapsacean algae, especially Emiliania huxleyi and Gephyrocapsa oceanica. Alkenone temperature records in sediment trap samples at 1674 m were almost similar to observed sea surface temperatures (SST) with a time delay of one half to one full month. However, alkenone temperatures in trap samples were about slightly lower than measured SST in late spring to early fall. The lowering might be caused by formation of the seasonal thermocline. Nevertheless, these temperature drops observed in trap samples were smaller than those actually observed in a subsurface layer off central Japan. Vertical profiles of A&A concentrations and alkenone temperatures in suspended particles collected from the subsurface waters in early fall indicated that these compounds were produced mostly in a surface mixed layer above the depth of the chlorophyll maximum even in warm seasons. These results suggested that alkenone temperatures strongly reflected SST rather than the temperatures of thermocline waters in these study areas even in such a warm season. Pronounced maxima in A&A fluxes found in sediment trap samples at 1674 m in late spring to summer showed that A&A productions were highest during the periods of spring bloom, according to a time delay between alkenone temperatures and observed SST. Seasonal patterns of alkenone records in trap samples at 4180 and 5687 m could also preserve SST signals well, suggesting that A&A in deep sea waters were mainly derived from primary products in the surface layer. A&A fluxes tended to decrease with water depth, and the ratios of A&A to particulate organic carbon (POC) rapidly decreased in underlying bottom sediment. This clearly indicates that A&A were decomposed and diluted by other refractory organic materials in either the water column or the sediment–water interface. However, A&A compositions were consistently uniform between the trap samples and the underlying bottom sediments, so that A&A could not qualitatively alter during early diagenetic processes.  相似文献   
18.
The photoluminescence (PL) spectra, optical excitation spectra and PL decay curves of anthophyllite from Canada were obtained at 300 and 10 K. The MnO content in the sample, determined using an electron probe microanalyzer, was high at 5.77 wt%. In the PL spectra obtained under 410-nm excitation, bright red bands with peaks at 651 and 659 nm were observed at 300 and 10 K, respectively. The origin of the red luminescence was ascribed to Mn2+ in anthophyllite from the analysis of the excitation spectra and PL decay times of 6.1–6.6 ms. In the PL spectra obtained under 240-nm excitation at 300 K, a small violet band with a peak at 398 nm was observed. On the violet band at 10 K, a vibronic structure was observed. The origin of the violet luminescence was attributed to a minor impurity in anthophyllite.  相似文献   
19.
20.
Isolation and chemical elucidation of dissolved and particulate polysaccharides in seawater were conducted. The water samples were collected in Mikawa Bay, Japan during a red tide bloom of the dinoflagellate, Prorocentrum minimum.Dissolved polysaccharides were concentrated from 5–101 of seawater with dialysis followed by separation by gel flitration, and isolation by ethanol precipitation. A heteropolysaccharide consisting of glucose, galactose, mannose, xylose, arabinose, fucose and rhamnose and a glucan were isolated from the polysaccharide component having a molecular weight more than 4,000 Dalton and were characterized by several chemical analyses. The heteropolysaccharide is a mucilaginous polysaccharide having a highly branched structure and a molecular weight of 104?5 × 106 Daltons and probably contains a sulfate half ester: the glucan is a polysaccharide with β-1,3- and 1,6-linkages (chrysolaminaran type). Concentrations of these were respectively ca. 20 and 67 μg l?1 at 1 m, and 2 and 26 μg l?1 at 6 m.A similar heteropolysaccharide was found in the boiling water extract of the particulate matter, while β-glucan was isolated in a much less purified form than the seawater β-glucan. In addition, a large amount of β-1,4 glucan was found in the strong alkali extract of the particulate matter, indicating that this glucan must be a cell wall polysaccharide derived from phytoplankton. These results strongly suggest that the heteropolysaccharide and chrysolaminaran type polysaccharide dissolved in seawater were derived from water soluble carbohydrates of phytoplankton through extracellular release or cell lysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号