首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   952篇
  免费   43篇
  国内免费   5篇
测绘学   25篇
大气科学   90篇
地球物理   289篇
地质学   223篇
海洋学   95篇
天文学   164篇
自然地理   114篇
  2021年   9篇
  2020年   10篇
  2019年   11篇
  2018年   16篇
  2017年   14篇
  2016年   24篇
  2015年   18篇
  2014年   20篇
  2013年   41篇
  2012年   24篇
  2011年   41篇
  2010年   40篇
  2009年   50篇
  2008年   36篇
  2007年   36篇
  2006年   52篇
  2005年   45篇
  2004年   51篇
  2003年   42篇
  2002年   34篇
  2001年   34篇
  2000年   23篇
  1999年   17篇
  1998年   24篇
  1997年   19篇
  1996年   13篇
  1995年   13篇
  1994年   18篇
  1993年   12篇
  1992年   23篇
  1991年   8篇
  1990年   15篇
  1989年   8篇
  1988年   9篇
  1987年   14篇
  1986年   11篇
  1985年   14篇
  1984年   10篇
  1983年   16篇
  1982年   13篇
  1981年   13篇
  1980年   10篇
  1979年   9篇
  1978年   7篇
  1977年   9篇
  1976年   4篇
  1975年   5篇
  1974年   3篇
  1973年   5篇
  1970年   2篇
排序方式: 共有1000条查询结果,搜索用时 281 毫秒
61.
In the work reported here the comprehensive physics‐based Integrated Hydrology Model (InHM) was employed to conduct both three‐ and two‐dimensional (3D and 2D) hydrologic‐response simulations for the small upland catchment known as C3 (located within the H. J. Andrews Experimental Forest in Oregon). Results from the 3D simulations for the steep unchannelled C3 (i) identify subsurface stormflow as the dominant hydrologic‐response mechanism and (ii) show the effect of the down‐gradient forest road on both the surface and subsurface flow systems. Comparison of the 3D results with the 2D results clearly illustrates the importance of convergent subsurface flow (e.g. greater pore‐water pressures in the hollow of the catchment for the 3D scenario). A simple infinite‐slope model, driven by subsurface pore‐water pressures generated from the 3D and 2D hydrologic‐response simulations, was employed to estimate slope stability along the long‐profile of the C3 hollow axis. As expected, the likelihood of slope failure is underestimated for the lower pore pressures from the 2D hydrologic‐response simulation compared, in a relative sense, to the higher pore pressures from the 3D hydrologic response simulation. The effort reported herein provides a firm quantitative foundation for generalizing the effects that forest roads can have on near‐surface hydrologic response and slope stability at the catchment scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
62.
A simple temporal and spatial analysisis done on wind speed and direction data from a number ofmeteorological towers separated by distances between roughly 1 and 100 kilometres. The analysis is done in the context of expected model error in wind energy calculations. The study first uses single point statistics to show the evolution of mean values with time. It is shown that strong seasonal signals are present and that stable means are achieved only after averaging periods of a year or more. The study then uses discrete Fourier transforms to show that significant amounts of spectral energy reside in modes with periods of a few days to less than a day. Frequency dependent cross correlation values are then derived and used to show how correlation between towers diminishes with increasing frequency. The mechanism responsible for this diminished correlation is shown through the comparison of cross-correlation phase as a function of frequency and its relationship to distance between towers. Error in wind energy estimates are shown to be strongly related to correlation and therefore distance over which the prediction is made. In summary, much of the inaccuracy in modelling flow in the context of wind energy calculations is due to a lack of scale separation between the deterministic part of the flow, which is well modelled, and that part of the flow that is stochastic at the length and time scales modelled.  相似文献   
63.
An integrated modelling approach (MIRSED) which utilizes the process‐based soil erosion model WEPP (Water Erosion Prediction Project) is presented for the assessment of hillslope‐scale soil erosion at five sites throughout England and Wales. The methodology draws upon previous uncertainty analysis of the WEPP hillslope soil erosion model by the authors to qualify model results within an uncertainty framework. A method for incorporating model uncertainty from a range of sources is discussed as a first step towards using and learning from results produced through the GLUE (Generalized Likelihood Uncertainty Estimation) technique. Results are presented and compared to available observed data, which illustrate that levels of uncertainty are significant and must be taken into account if a meaningful understanding of output from models such as WEPP is to be achieved. Furthermore, the collection of quality, observed data is underlined for two reasons: as an essential tool in the development of soil erosion modelling and also to allow further constraint of model uncertainty. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
64.
65.
Meteoric waters from cold springs and streams outside of the 1912 eruptive deposits filling the Valley of Ten Thousand Smokes (VTTS) and in the upper parts of the two major rivers draining the 1912 deposits have similar chemical trends. Thermal springs issue in the mid-valley area along a 300-m lateral section of ash-flow tuff, and range in temperature from 21 to 29.8°C in early summer and from 15 to 17°C in mid-summer. Concentrations of major and minor chemical constituents in the thermal waters are nearly identical regardless of temperature. Waters in the downvalley parts of the rivers draining the 1912 deposits are mainly mixtures of cold meteoric waters and thermal waters of which the mid-valley thermal spring waters are representative. The weathering reactions of cold waters with the 1912 deposits appear to have stabilized and add only subordinate amounts of chemical constituents to the rivers relative to those contributed by the thermal waters. Isotopic data indicate that the mid-valley thermal spring waters are meteoric, but data is inconclusive regarding the heat source. The thermal waters could be either from a shallow part of a hydrothermal system beneath the 1912 vent region or from an incompletely cooled, welded tuff lens deep in the 1912 ash-flow sheet of the upper River Lethe area.Bicarbonate-sulfate waters resulting from interaction of near-surface waters and the cooling 1953–1968 southwest Trident plug issue from thermal springs south of Katmai Pass and near Mageik Creek, although the Mageik Creek spring waters are from a well-established, more deeply circulating hydrothermal system. Katmai caldera lake waters are a result of acid gases from vigorous drowned fumaroles dissolving in lake waters composed of snowmelt and precipitation.  相似文献   
66.
67.
68.
69.
ABSTRACT

Ertsen discusses the representation of reality and uncertainty in our paper, raising three critical points. In response to the first, we agree that discussion of different interpretations of the concept of uncertainty is important when developing perceptual models – making different uncertainty interpretations explicit was a key motivation behind our method. Secondly, we do not, as Ertsen suggests, deny anyone who is not a “certified” scientist to have relevant knowledge. The elicitation of diverse views by discussing perceptual models is a basis for open discussion and decision making. Thirdly, Ertsen suggests that it is not useful to treat socio-hydrological systems as if they exist. We argue that we act as “pragmatic realists” in most practical applications by treating socio-hydrological systems as an external reality that can be known. But the uncertainty that arises from our knowledge limitations needs to be recognized, as it may impact on practical decision making and associated costs.  相似文献   
70.
Disarmament has again become a major public concern in many nations. The main manifestations of this development have been demonstrations and marches and mass media attention to the possible consequences of a nuclear war. Less publicized has been governmental work, including that at the United Nations, in negotiating disarmament treaties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号