首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   860篇
  免费   40篇
  国内免费   8篇
测绘学   26篇
大气科学   69篇
地球物理   239篇
地质学   304篇
海洋学   94篇
天文学   124篇
综合类   3篇
自然地理   49篇
  2024年   5篇
  2023年   3篇
  2022年   13篇
  2021年   26篇
  2020年   34篇
  2019年   23篇
  2018年   45篇
  2017年   33篇
  2016年   42篇
  2015年   29篇
  2014年   46篇
  2013年   67篇
  2012年   37篇
  2011年   56篇
  2010年   49篇
  2009年   66篇
  2008年   59篇
  2007年   42篇
  2006年   34篇
  2005年   23篇
  2004年   24篇
  2003年   18篇
  2002年   19篇
  2001年   11篇
  2000年   8篇
  1999年   11篇
  1998年   9篇
  1997年   3篇
  1996年   8篇
  1995年   3篇
  1994年   6篇
  1993年   2篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1974年   5篇
  1973年   2篇
  1970年   2篇
排序方式: 共有908条查询结果,搜索用时 125 毫秒
31.
Many large rivers around the world no longer flow to their deltas, due to ever greater water withdrawals and diversions for human needs. However, the importance of riparian ecosystems is drawing increasing recognition, leading to the allocation of environmental flows to restore river processes. Accurate estimates of riparian plant evapotranspiration (ET) are needed to understand how the riverine system responds to these rare events and achieve the goals of environmental flows. In 2014, historic environmental flows were released into the Lower Colorado River at Morelos Dam (Mexico); this once perennial but now dry reach is the final stretch to the mighty Colorado River Delta. One of the primary goals was to supply native vegetation restoration sites along the reach with water to help seedlings establish and boost groundwater levels to foster the planted saplings. Patterns in ET before, during, and after the flows are useful for evaluating whether this goal was met and understanding the role that ET plays in this now ephemeral river system. Here, diurnal fluctuations in groundwater levels and Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to compare estimates of ET specifically at 3 native vegetation restoration sites during 2014 planned flow events, and MODIS data were used to evaluate long‐term (2002–2016) ET responses to restoration efforts at these sites. Overall, ET was generally 0–10 mm d?1 across sites, and although daily ET values from groundwater data were highly variable, weekly averaged estimates were highly correlated with MODIS‐derived estimates at most sites. The influence of the 2014 flow events was not immediately apparent in the results, although the process of clearing vegetation and planting native vegetation at the restoration sites was clearly visible in the results.  相似文献   
32.
This paper presents a new analytical criterion for brittle failure of rocks and heavily over-consolidated soils. Griffith’s model of a randomly oriented defect under a biaxial stress state is used to keep the criterion simple. The Griffith’s criterion is improved because the maximum tensile strength is not evaluated at the boundary of the defect but at a certain distance from the boundary, known as half of the critical distance. This fracture criterion is known as the point method, and is part of the theory of critical distances, which is utilised in fracture mechanics. The proposed failure criterion has two parameters: the inherent tensile strength, σ 0, and the ratio of the half-length of the initial crack/flaw to the critical distance, a/L. These parameters are difficult to measure but they may be correlated with the uniaxial compressive and tensile strengths, σ c and σ t. The proposed criterion is able to reproduce the common range of strength ratios for rocks and heavily overconsolidated soils (σ c/σ t = 3–50) and the influence of several microstructural rock properties, such as texture and porosity. Good agreement with laboratory tests reported in the literature is found for tensile and low-confining stresses.  相似文献   
33.
34.
35.
36.
The hyper-arid conditions prevailing in Agua Verde aquifer in northern Chile make this system the most important water source for nearby towns and mining industries. Due to the growing demand for water in this region, recharge is investigated along with the impact of intense pumping activity in this aquifer. A conceptual model of the hydrogeological system is developed and implemented into a two-dimensional groundwater-flow numerical model. To assess the impact of climate change and groundwater extraction, several scenarios are simulated considering variations in both aquifer recharge and withdrawals. The estimated average groundwater lateral recharge from Precordillera (pre-mountain range) is about 4,482 m3/day. The scenarios that consider an increase of water withdrawal show a non-sustainable groundwater consumption leading to an over-exploitation of the resource, because the outflows surpasses inflows, causing storage depletion. The greater the depletion, the larger the impact of recharge reduction caused by the considered future climate change. This result indicates that the combined effects of such factors may have a severe impact on groundwater availability as found in other groundwater-dependent regions located in arid environments. Furthermore, the scenarios that consider a reduction of the extraction flow rate show that it may be possible to partially alleviate the damage already caused to the aquifer by the continuous extractions since 1974, and it can partially counteract climate change impacts on future groundwater availability caused by a decrease in precipitation (and so in recharge), if the desalination plant in Taltal increases its capacity.  相似文献   
37.
The study of drying process in soils has received an increased attention in the last few years. This is very complex phenomenon that generally leads to the formation and propagation of desiccation cracks in the soil mass. In recent engineering applications, high aspect ratio elements have proved to be well suited to tackle this type of problem using finite elements. However, the modeling of interfaces between materials with orthotropic properties that generally exist in this type of problem using standard (isotropic) constitutive model is very complex and challenging in terms of the mesh generation, leading to very fine meshes that are intensive CPU demanding. A novel orthotropic interface mechanical model based on damage mechanics and capable of dealing with interfaces between materials in which the strength depends on the direction of analysis is proposed in this paper. The complete mathematical formulation is presented together with the algorithm suggested for its numerical implementation. Some simple yet challenging synthetic benchmarks are analyzed to explore the model capabilities. Laboratory tests using different textures at the contact surface between materials were conducted to evaluate the strengths of the interface in different directions. These experiments were then used to validate the proposed model. Finally, the approach is applied to simulate an actual desiccation test involving an orthotropic contact surface. In all the application cases the performance of the model was very satisfactory.  相似文献   
38.
Cadmium, chromium, nickel, and lead were evaluated in the particulate fraction at one of the most industrialized estuaries at the Southwestern Atlantic Ocean, through Geographic Information System (GIS). Concentrations were analyzed at 21 stations during 2008–2010. The highest metal concentrations (Cd: 8,9; Cr: 256,49; Ni: 27,02; Pb: 78,43 µg g??1 d. w.) were recorded at the stations located near industrial and urban discharges situated along the estuary. In addition, Pb presented a different seasonal and spatial behavior in comparison with Cd, Cr and Ni. Winter and spring presented the higher concentrations of Pb, and the inner stations presented the higher values. The estuary is considered a moderate to strongly polluted and significantly polluted according to the Index of geoaccumulation (Igeo) and the Enrichment Factor of Cd, respectively. The Multidimensional Scaling plot showed three groups of stations: the inner, associated to low levels of metals (G1), middle stations (G2) with intermediate levels and the outer (G3) with the highest ones. In addition, this work reveals the usefulness of the GIS-mapping techniques in the distribution of pollutants along an estuarine environment and the environmental quality assessment of estuarine systems.  相似文献   
39.

This paper describes the main features related to lateral displacements with depth after successive lateral loading–unloading cycles applied to the top of reinforced-concrete flexible bored piles embedded in naturally bonded residual soil. The bored piles under study have a cylindrical shape, with 0.40-m in diameter and 8.0-m in length. Both bored piles types (P1 and P2) include an embedded steel pipe section in their center as longitudinal steel reinforcements: pile type P1 has another 16 steel rods as steel reinforcement to concrete while pile type P2 has no further steel reinforcement. Pile type P1 has three times as much stiffness (EI) and four and a half times the plastic moment (My) than pile type P2. A similar load–displacement performance was observed at initial loads as for small displacements of both piles. At this initial loading stage, the response of the reinforced concrete piles is a function of the soil characteristics and of a linear elastic pile deformation. During this stage, piles can even be understood as probes for evaluating soil reactions. For larger horizontal displacements, after the concrete section starts undergoing large deformations, approaching the ultimate bending moment, pile behavior and consequently the load–displacement relation starts to diverge for both piles. For pile P1 the values of relevant lateral displacements are extended to about 2.5-m in depth, while for pile P2 lateral displacements are mostly constrained to about 2.0-m in depth. Measurements of horizontal displacements of pile P1 against depth recorded with a slope indicator show that, after unloading, lateral loads at distinct stages (small and near failure loads), exhibits a much higher elastic phase of the system response. An analytical fitting model of soil reaction is proposed based on the measured displacements from slope indicator. The integration of a continuous model proposed for the soil reaction agrees fairly well with the measured displacements up to moments close to plastic limit. Results of load–displacement show that the stiffer pile (P1) was able to mobilize twice as much lateral load compared to pile P2 for a service limit displacement of about 20 mm. The paper shows results that enable the isolation of the structural variable through real scale pile load tests, thus granting understanding of its importance and enabling its quantitative visualization in examples of piles embedded in residual soil sites.

  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号